函數(shù)f(x)對(duì)任意實(shí)數(shù)x滿足條件f(x+2)=-f(x),若f(1)=-5,則f[f(5)]=______.
∵對(duì)任意實(shí)數(shù)x滿足條件f(x+2)=-f(x)
∴f(x+4)=f[(x+2)+2]=-f(x+2)=-(-f(x))=f(x)
∴函數(shù)f(x)的周期為4
∴f(5)=f(5-4)=f(1)=-5
∴f[f(5)]=f(-5)=f(-5+4)=f(-1)=-f(-1+2)=-f(1)=5
故答案為5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、例5.已知函數(shù)f(x)對(duì)其定義域內(nèi)的任意兩個(gè)數(shù)a,b,當(dāng)a<b時(shí),都有f(a)<f(b),證明:f(x)=0至多有一個(gè)實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)對(duì)任意x∈R,滿足f(x)=f(4-x).如果方程f(x)=0恰有2011個(gè)實(shí)根,則所有這些實(shí)根之和為(  )
A、0B、2011C、4022D、8044

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西省重點(diǎn)中學(xué)協(xié)作體2012屆高三第一次聯(lián)考數(shù)學(xué)文科試題 題型:013

設(shè)f(x),g(x),h(x)是R上的任意實(shí)值函數(shù),如下定義兩個(gè)函數(shù)(f·g)x和(f·g)(x):對(duì)任意x∈R,(f·g)(x)=f(g(x));(f·g)(x)=f(x)g(x),則下列等式恒成立的是

[  ]
A.

((f·g)·h)(x)=((f·h)·(g·h))(x)

B.

((f·g)·h)(x)=((f·h)·(g·h))(x)

C.

((f·g)·h)(x)=((f·h)·(g·h))(x)

D.

((f·g)·h)(x)=((f·h)·(g·h))(x)■(選項(xiàng)一樣)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西省重點(diǎn)中學(xué)協(xié)作體2012屆高三第一次聯(lián)考數(shù)學(xué)理科試題 題型:013

設(shè)f(x),g(x),h(x)是R上的實(shí)值函數(shù),如下定義兩個(gè)函數(shù)(f·g)(x)和(f·g)(x):對(duì)任意x∈R,(f·g)(x)=f(g(x));(f·g)(x)=f(x)g(x),則下列等式恒成立的是

[  ]
A.

((f·g)·h)(x)=((f·h)·(g·h))(x)

B.

((f·g)·h)(x)=((f·h)·(g·h))(x)

C.

((f·g)·h)(x)=((f·h)·(g·h))(x)

D.

((f·g)·h)(x)=((f·h)·(g·h))(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第05課時(shí)):第一章 集合與簡(jiǎn)易邏輯-簡(jiǎn)易邏輯(解析版) 題型:解答題

例5.已知函數(shù)f(x)對(duì)其定義域內(nèi)的任意兩個(gè)數(shù)a,b,當(dāng)a<b時(shí),都有f(a)<f(b),證明:f(x)=0至多有一個(gè)實(shí)根.

查看答案和解析>>

同步練習(xí)冊(cè)答案