求證:(2-cos2α)(1+2cot2α)=(2+cot2α)(2-sin2α).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,其相應(yīng)于焦點(diǎn)F(2,0)的準(zhǔn)線方程為x=4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知過(guò)點(diǎn)F1(-2,0)傾斜角為θ的直線交橢圓C于A,B兩點(diǎn).
求證:|AB|=
4
2
2-cos2θ

(Ⅲ)過(guò)點(diǎn)F1(-2,0)作兩條互相垂直的直線分別交橢圓C于點(diǎn)A、B和D、E,求|AB|+|DE|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:α、β∈(0,
π
2
)
,且
cos2α
sin2β
+
sin2α
cos2β
=1
.求證:α+β=
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:
1
2
+cosα+cos2α+cos3α+…+cosnα=
cosnα-cos(n+1)α
2(1-cosα)
.n∈N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:安徽 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,其相應(yīng)于焦點(diǎn)F(2,0)的準(zhǔn)線方程為x=4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知過(guò)點(diǎn)F1(-2,0)傾斜角為θ的直線交橢圓C于A,B兩點(diǎn).
求證:|AB|=
4
2
2-cos2θ
;
(Ⅲ)過(guò)點(diǎn)F1(-2,0)作兩條互相垂直的直線分別交橢圓C于點(diǎn)A、B和D、E,求|AB|+|DE|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案