【題目】我國南北朝時期的數(shù)學(xué)家祖暅提出了計算體積的祖暅原理:“冪勢既同,則積不容異!币馑际牵簝蓚等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體的體積相等.已知曲線,直線為曲線在點處的切線.如圖所示,陰影部分為曲線、直線以及軸所圍成的平面圖形,記該平面圖形繞軸旋轉(zhuǎn)一周所得的幾何體為.給出以下四個幾何體:

圖①是底面直徑和高均為的圓錐;

圖②是將底面直徑和高均為的圓柱挖掉一個與圓柱同底等高的倒置圓錐得到的幾何體;

圖③是底面邊長和高均為的正四棱錐;

圖④是將上底面直徑為,下底面直徑為,高為的圓臺挖掉一個底面直徑為,高為的倒置圓錐得到的幾何體.

根據(jù)祖暅原理,以上四個幾何體中與的體積相等的是( )

A. B. C. D.

【答案】A

【解析】

將題目中的切線寫出來,然后表示出水平截面的面積,因為是陰影部分旋轉(zhuǎn)得到,所以水平界面面積為環(huán)形面積,整理后,與其他四個幾何體進行比較,找到等高處的水平截面的面積相等的,即為所求.

幾何體是由陰影旋轉(zhuǎn)得到,所以橫截面為環(huán)形,

且等高的時候,拋物線對應(yīng)的點的橫坐標(biāo)為,切線對應(yīng)的橫坐標(biāo)為

,

切線為,即,

橫截面面積

圖①中的圓錐高為1,底面半徑為,可以看成由直線軸旋轉(zhuǎn)得到

橫截面的面積為.

所以幾何體和①中的圓錐在所有等高處的水平截面的面積相等,所以二者體積相等,

故選A項.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:實數(shù)x滿足x2-2ax-3a2<0(a>0),命題q:實數(shù)x滿足≥0.

(Ⅰ)若a=1,p,q都為真命題,求x的取值范圍;

(Ⅱ)若q是p的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】齊王有上等,中等,下等馬各一匹;田忌也有上等,中等,下等馬各一匹.田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬;田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬;田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機各選一匹進行一場比賽,若有優(yōu)勢的馬一定獲勝,則齊王的馬獲勝的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓方程為分別是橢圓的左右焦點.

①若P是橢圓上的動點,延長M,使,則M的軌跡是圓;

②若是橢圓上的動點,則

③以焦點半徑為直徑的圓必與以長軸為直徑的圓內(nèi)切;

④點P為橢圓上任意一點,則橢圓的焦點三角形的面積為

以上說法中,正確的有(

A.①③④B.①③C.②③④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線的一條漸近線方程是,坐標(biāo)原點到直線AB的距離為,其中,.

1)求雙曲線的方程;

2)若是雙曲線虛軸在y軸正半軸上的端點,過點B作直線交雙曲線于點M,N,求時,直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若,試判斷的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且與拋物線交于,兩點,為坐標(biāo)原點)的面積為

(1)求橢圓的方程;

(2)如圖,點為橢圓上一動點(非長軸端點)為左、右焦點,的延長線與橢圓交于點,的延長線與橢圓交于點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐P-ABC中,PB=BC,PA=AC=4,PC=2,若過的平面將三棱錐P-ABC分為體積相等的兩部分,則棱PA與平面所成角的余弦值為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的右焦點為,是橢圓上任意一點,且點與兩個焦點構(gòu)成的三角形的面積的最大值為8.

1)求橢圓的方程;

2)若是上頂點,直線l交橢圓兩點,的重心恰好為點,求直線l的方程的一般式.

查看答案和解析>>

同步練習(xí)冊答案