【題目】我國(guó)南北朝時(shí)期的數(shù)學(xué)家祖暅提出了計(jì)算體積的祖暅原理:“冪勢(shì)既同,則積不容異!币馑际牵簝蓚(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等.已知曲線,直線為曲線在點(diǎn)處的切線.如圖所示,陰影部分為曲線、直線以及軸所圍成的平面圖形,記該平面圖形繞軸旋轉(zhuǎn)一周所得的幾何體為.給出以下四個(gè)幾何體:
① ② ③ ④
圖①是底面直徑和高均為的圓錐;
圖②是將底面直徑和高均為的圓柱挖掉一個(gè)與圓柱同底等高的倒置圓錐得到的幾何體;
圖③是底面邊長(zhǎng)和高均為的正四棱錐;
圖④是將上底面直徑為,下底面直徑為,高為的圓臺(tái)挖掉一個(gè)底面直徑為,高為的倒置圓錐得到的幾何體.
根據(jù)祖暅原理,以上四個(gè)幾何體中與的體積相等的是( )
A. ①B. ②C. ③D. ④
【答案】A
【解析】
將題目中的切線寫出來,然后表示出水平截面的面積,因?yàn)槭顷幱安糠中D(zhuǎn)得到,所以水平界面面積為環(huán)形面積,整理后,與其他四個(gè)幾何體進(jìn)行比較,找到等高處的水平截面的面積相等的,即為所求.
幾何體是由陰影旋轉(zhuǎn)得到,所以橫截面為環(huán)形,
且等高的時(shí)候,拋物線對(duì)應(yīng)的點(diǎn)的橫坐標(biāo)為,切線對(duì)應(yīng)的橫坐標(biāo)為
,
切線為,即,
橫截面面積
圖①中的圓錐高為1,底面半徑為,可以看成由直線繞軸旋轉(zhuǎn)得到
橫截面的面積為.
所以幾何體和①中的圓錐在所有等高處的水平截面的面積相等,所以二者體積相等,
故選A項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)x滿足x2-2ax-3a2<0(a>0),命題q:實(shí)數(shù)x滿足≥0.
(Ⅰ)若a=1,p,q都為真命題,求x的取值范圍;
(Ⅱ)若q是p的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】齊王有上等,中等,下等馬各一匹;田忌也有上等,中等,下等馬各一匹.田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬;田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬;田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)各選一匹進(jìn)行一場(chǎng)比賽,若有優(yōu)勢(shì)的馬一定獲勝,則齊王的馬獲勝的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程為,和分別是橢圓的左右焦點(diǎn).
①若P是橢圓上的動(dòng)點(diǎn),延長(zhǎng)到M,使,則M的軌跡是圓;
②若是橢圓上的動(dòng)點(diǎn),則;
③以焦點(diǎn)半徑為直徑的圓必與以長(zhǎng)軸為直徑的圓內(nèi)切;
④點(diǎn)P為橢圓上任意一點(diǎn),則橢圓的焦點(diǎn)三角形的面積為
以上說法中,正確的有( )
A.①③④B.①③C.②③④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線的一條漸近線方程是,坐標(biāo)原點(diǎn)到直線AB的距離為,其中,.
(1)求雙曲線的方程;
(2)若是雙曲線虛軸在y軸正半軸上的端點(diǎn),過點(diǎn)B作直線交雙曲線于點(diǎn)M,N,求時(shí),直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,且與拋物線交于,兩點(diǎn), (為坐標(biāo)原點(diǎn))的面積為.
(1)求橢圓的方程;
(2)如圖,點(diǎn)為橢圓上一動(dòng)點(diǎn)(非長(zhǎng)軸端點(diǎn)),為左、右焦點(diǎn),的延長(zhǎng)線與橢圓交于點(diǎn),的延長(zhǎng)線與橢圓交于點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐P-ABC中,PB=BC,PA=AC=4,PC=2,若過的平面將三棱錐P-ABC分為體積相等的兩部分,則棱PA與平面所成角的余弦值為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的右焦點(diǎn)為,是橢圓上任意一點(diǎn),且點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積的最大值為8.
(1)求橢圓的方程;
(2)若是上頂點(diǎn),直線l交橢圓于,兩點(diǎn),的重心恰好為點(diǎn),求直線l的方程的一般式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com