若y=f(x)是奇函數(shù),當x>0時,f(x)=2x+1,則數(shù)學(xué)公式=


  1. A.
    7
  2. B.
    數(shù)學(xué)公式
  3. C.
    -4
  4. D.
    數(shù)學(xué)公式
C
分析:判斷出<0,再利用符號轉(zhuǎn)化為大于零,再代入解析式根據(jù)“”進行求解.
解答:∵=-<0,且y=f(x)是奇函數(shù),
=-f(
∵當x>0時,f(x)=2x+1,∴=-(+1)=-4,
故選C.
點評:本題考查了偶函數(shù)的性質(zhì)和對數(shù)運算性質(zhì),即根據(jù)偶函數(shù)對應(yīng)的關(guān)系式,將所求的函數(shù)值進行轉(zhuǎn)化,轉(zhuǎn)化到已知范圍內(nèi)求解,考查了轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時,f(x)>0.
(1)求證:函f(x)是奇函數(shù);
(2)求證:函數(shù)f(x)是R上的減函數(shù);
(3)若定義在(-2,2)上的函數(shù)f(x)滿足f(-m)+f(1-m)<0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•寶山區(qū)二模)已知f(x)=
10x+a10x+1
是奇函數(shù).
(1)求a的值;
(2)求f(x)的反函 數(shù) f-1(x),判斷f-1(x)的奇偶性,并給予證明;
(3)若函數(shù)y=F(x)是以2為周期的奇函數(shù),當x∈(-1,0)時,F(xiàn)(x)=f-1(x),求x∈(2,3)時F(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)=數(shù)學(xué)公式是奇函數(shù).
(1)求a的值;
(2)求f(x)的反函 數(shù) f-1(x),判斷f-1(x)的奇偶性,并給予證明;
(3)若函數(shù)y=F(x)是以2為周期的奇函數(shù),當x∈(-1,0)時,F(xiàn)(x)=f-1(x),求x∈(2,3)時F(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)對任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時,f(x)>0.
(1)求證:函f(x)是奇函數(shù);
(2)求證:函數(shù)f(x)是R上的減函數(shù);
(3)若定義在(-2,2)上的函數(shù)f(x)滿足f(-m)+f(1-m)<0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)對任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時,f(x)>0.
(1)求證:函f(x)是奇函數(shù);
(2)求證:函數(shù)f(x)是R上的減函數(shù);
(3)若定義在(-2,2)上的函數(shù)f(x)滿足f(-m)+f(1-m)<0,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案