分析 (Ⅰ)由${V}_{B-DE{B}_{1}}$=${V}_{{B}_{1}-BDE}$,能求出三棱錐B-DEB1的體積.
(Ⅱ)推導(dǎo)出AA1⊥A1C1,A1C1⊥A1B1,從而A1C1⊥平面ABB1A1,進而A1C1⊥B1D,再由B1D⊥A1F,能證明平面B1DE⊥平面A1C1F.
解答 (本小題滿分12分)
解:(Ⅰ)∵D,E分別為AB,BC的中點,
∴DE∥AC,$DE=\frac{1}{2}AC=\frac{3}{2}$,$BD=\frac{1}{2}AB=2$.(2分)
∵A1C1⊥A1B1,∴AC⊥AB,DE⊥DB.(3分)
∴${S_{△BDE}}=\frac{1}{2}BD•DE=\frac{1}{2}×2×\frac{3}{2}=\frac{3}{2}$.(4分)
∵ABC-A1B1C1是直三棱柱,∴B1B⊥平面ABC,BB1=AA1=4,
∴${V}_{{B}_{1}-BDE}$=$\frac{1}{3}×B{B}_{1}$×S△BDE=$\frac{1}{3}×4×\frac{3}{2}$=2,(5分)
∵${V}_{B-DE{B}_{1}}$=${V}_{{B}_{1}-BDE}$,∴三棱錐B-DEB1的體積為2.(6分)
證明:(Ⅱ)在直三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C,
∵A1C1?平面A1B1C1,∴AA1⊥A1C1.(7分)
又∵A1C1⊥A1B1,AA1?平面ABB1A1,A1B1?平面ABB1A1,A1B1∩AA1=A1,
∴A1C1⊥平面ABB1A1.(8分)
∵B1D?平面ABB1A1,∴A1C1⊥B1D.(9分)
又∵B1D⊥A1F,A1C1?平面A1C1F,A1F?平面A1C1F,A1C1∩A1F=A1,
∴B1D⊥平面A1C1F.(11分)
∵直線B1D?平面B1DE,∴平面B1DE⊥平面A1C1F.(12分)
點評 本題三棱錐的體積的求法,考查面面垂直的證明,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-3,3] | B. | $[-\frac{3}{2},3]$ | C. | $[-3,\frac{{3\sqrt{3}}}{2}]$ | D. | $[-3,\frac{3}{2}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
短期培訓(xùn) | 長期培訓(xùn) | 合計 | |
能力優(yōu)秀 | 8 | 54 | 62 |
能力不優(yōu)秀 | 17 | 21 | 38 |
合計 | 25 | 75 | 100 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | $-\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}+\frac{1}{2}i$ | B. | -$\frac{1}{2}+\frac{1}{2}i$ | C. | -$\frac{1}{2}-\frac{1}{2}i$ | D. | $\frac{1}{2}-\frac{1}{2}i$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com