點(diǎn)P在曲線C:+y2=1上,若存在過P的直線交曲線C于A點(diǎn),交直線l:x=4于B點(diǎn),滿足|PA|=|PB|或|PA|=|AB|,則稱點(diǎn)P為“H點(diǎn)”,那么下列結(jié)論正確的是( )
A.曲線C上的所有點(diǎn)都是“H點(diǎn)”
B.曲線C上僅有有限個(gè)點(diǎn)是“H點(diǎn)”
C.曲線C上的所有點(diǎn)都不是“H點(diǎn)”
D.曲線C上有無窮多個(gè)點(diǎn)(但不是所有的點(diǎn))是“H點(diǎn)”
【答案】分析:設(shè)出-2≤xP<xA≤2,利用相似三角形求得xP和xA的關(guān)系,設(shè)出PA的方程與橢圓方程聯(lián)立求得xAxP的表達(dá)式,利用判別式大于0求得k和m的不等式關(guān)系,最后聯(lián)立①②③求得xA的范圍,進(jìn)而通過xA<1時(shí),xP=2xA-4<-2,故此時(shí)不存在H點(diǎn),進(jìn)而求得H點(diǎn)的橫坐標(biāo)取值范圍,判斷出題設(shè)的選項(xiàng).
解答:解:由題意,P、A的位置關(guān)系對(duì)稱,于是不妨設(shè)-2≤xP<xA≤2,(此時(shí)PA=AB).
由相似三角形,2|4-xA|=|4-xP|
即:xP=2xA-4…①
設(shè)PA:y=kx+m,與橢圓聯(lián)立方程組,
解得
xAxP=…②
∵△>0
4k2>m2-1…③
聯(lián)立①②③,得xA2-2xA
而0<<2
即xA2-2xA<2
即1-≤xA≤2
而當(dāng)xA<1時(shí),xP=2xA-4<-2,故此時(shí)不存在H點(diǎn)
又因?yàn)镻的位置可以和A互換(互換后即PA=PB),
所以H點(diǎn)的橫坐標(biāo)取值為[-2,0]U[1,2]
故選D
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的關(guān)系問題.解題的關(guān)鍵是求得H點(diǎn)的橫坐標(biāo)取值范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省南昌二中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

點(diǎn)P在曲線C:+y2=1上,若存在過P的直線交曲線C于A點(diǎn),交直線l:x=4于B點(diǎn),滿足|PA|=|PB|或|PA|=|AB|,則稱點(diǎn)P為“H點(diǎn)”,那么下列結(jié)論正確的是( )
A.曲線C上的所有點(diǎn)都是“H點(diǎn)”
B.曲線C上僅有有限個(gè)點(diǎn)是“H點(diǎn)”
C.曲線C上的所有點(diǎn)都不是“H點(diǎn)”
D.曲線C上有無窮多個(gè)點(diǎn)(但不是所有的點(diǎn))是“H點(diǎn)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省南昌二中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

點(diǎn)P在曲線C:+y2=1上,若存在過P的直線交曲線C于A點(diǎn),交直線l:x=4于B點(diǎn),滿足|PA|=|PB|或|PA|=|AB|,則稱點(diǎn)P為“H點(diǎn)”,那么下列結(jié)論正確的是( )
A.曲線C上的所有點(diǎn)都是“H點(diǎn)”
B.曲線C上僅有有限個(gè)點(diǎn)是“H點(diǎn)”
C.曲線C上的所有點(diǎn)都不是“H點(diǎn)”
D.曲線C上有無窮多個(gè)點(diǎn)(但不是所有的點(diǎn))是“H點(diǎn)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年北京市海淀區(qū)高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

點(diǎn)P在曲線C:+y2=1上,若存在過P的直線交曲線C于A點(diǎn),交直線l:x=4于B點(diǎn),滿足|PA|=|PB|或|PA|=|AB|,則稱點(diǎn)P為“H點(diǎn)”,那么下列結(jié)論正確的是( )
A.曲線C上的所有點(diǎn)都是“H點(diǎn)”
B.曲線C上僅有有限個(gè)點(diǎn)是“H點(diǎn)”
C.曲線C上的所有點(diǎn)都不是“H點(diǎn)”
D.曲線C上有無窮多個(gè)點(diǎn)(但不是所有的點(diǎn))是“H點(diǎn)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)專項(xiàng)復(fù)習(xí):創(chuàng)新題(2)(解析版) 題型:選擇題

點(diǎn)P在曲線C:+y2=1上,若存在過P的直線交曲線C于A點(diǎn),交直線l:x=4于B點(diǎn),滿足|PA|=|PB|或|PA|=|AB|,則稱點(diǎn)P為“H點(diǎn)”,那么下列結(jié)論正確的是( )
A.曲線C上的所有點(diǎn)都是“H點(diǎn)”
B.曲線C上僅有有限個(gè)點(diǎn)是“H點(diǎn)”
C.曲線C上的所有點(diǎn)都不是“H點(diǎn)”
D.曲線C上有無窮多個(gè)點(diǎn)(但不是所有的點(diǎn))是“H點(diǎn)”

查看答案和解析>>

同步練習(xí)冊(cè)答案