【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=ax﹣1(a>0,且a≠1).
(1)求f(2)+f(﹣2)的值;
(2)求f(x)的解析式;
(3)解關(guān)于x的不等式f(x)<4,結(jié)果用集合或區(qū)間表示.

【答案】
(1)解:∵f(x)是R上的奇函數(shù),∴f(﹣2)=﹣f(2),即f(2)+f(﹣2)=0
(2)解:設(shè)x<0,則﹣x>0,∴f(﹣x)=ax﹣1.

由f(x)是奇函數(shù),有f(﹣x)=﹣f(x),∵f(﹣x)=ax﹣1,

∴f(x)=﹣ax+1(x<0),∴所求的解析式為


(3)解:不等式等價(jià)于 ,

,即

當(dāng)a>1時(shí),有 ,∵loga5>0,所以不等式的解集為(﹣∞,loga5);

當(dāng)0<a<1時(shí),有 ,∵loga5<0,所以不等式的解集為(﹣∞,0).

綜上所述,當(dāng)a>1時(shí),不等式的解集為(﹣∞,loga5);

當(dāng)0<a<1時(shí),不等式的解集為(﹣∞,0)


【解析】(1)根據(jù)題意可得f(﹣2)=﹣f(2),即f(2)+f(﹣2)=0.(2)設(shè)x<0,則﹣x>0,根據(jù)f(﹣x)=ax﹣1=﹣f(x),求得f(x)的解析式.(3)分類討論a的范圍,利用函數(shù)的單調(diào)性求得不等式f(x)<4的解集.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)奇偶性的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線 .

(Ⅰ)求曲線的普通方程和的直角坐標(biāo)方程;

(Ⅱ)若相交于兩點(diǎn),設(shè)點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在圓上, 的坐標(biāo)分別為, ,線段的垂直平分線交線段于點(diǎn)

1)求點(diǎn)的軌跡的方程;

2)設(shè)圓與點(diǎn)的軌跡交于不同的四個(gè)點(diǎn),求四邊形的面積的最大值及相應(yīng)的四個(gè)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U={R},集合A={x|log2(3﹣x)≤2},集合B=
(1)求A,B;
(2)求(CUA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)結(jié)論中:
(1)如果兩個(gè)函數(shù)都是增函數(shù),那么這兩個(gè)函數(shù)的積運(yùn)算所得函數(shù)為增函數(shù);
(2)奇函數(shù)f(x)在[0,+∞)上是增函數(shù),則f(x)在R上為增函數(shù);
(3)既是奇函數(shù)又是偶函數(shù)的函數(shù)只有一個(gè);
(4)若函數(shù)f(x)的最小值是a,最大值是b,則f(x)值域?yàn)閇a,b].
其中正確結(jié)論的序號為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各式的值:
(1) ﹣( 0+( 0.5+ ;
(2)lg500+lg lg64+50(lg2+lg5)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為 (為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)為曲線上的動點(diǎn),求點(diǎn)到直線距離的最大值及其對應(yīng)的點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的對角線相交于點(diǎn),四邊形為矩形,平面平面.

(1)求證:平面平面;

(2)若點(diǎn)在線段上,且,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的左焦點(diǎn)F為圓的圓心,且橢圓C上的點(diǎn)到點(diǎn)F的距離最小值為。

I)求橢圓C的方程;

II)已知經(jīng)過點(diǎn)F的動直線與橢圓C交于不同的兩點(diǎn)AB,點(diǎn)M坐標(biāo)為),證明: 為定值。

查看答案和解析>>

同步練習(xí)冊答案