橢圓的兩焦點坐標分別為,且橢圓過點
(1)求橢圓方程;
(2)過點作不與y軸垂直的直線l交該橢圓于M、N兩點,A為橢圓的左頂點,試判斷∠MAN的大小是否為定值,并說明理由.
【答案】分析:(1)設出橢圓的方程,根據(jù)橢圓中三個參數(shù)的關系得到a,b的一個等式,再將橢圓過的點代入得到橢圓的另一個關于a,b的等式,解方程組,得到橢圓的方程.
(2)設出直線的方程,將直線方程與橢圓方程聯(lián)立,消去x得到關于y的方程,利用韋達定理得到交點坐標的關系,求出的值,利用向量垂直的充要條件求出∠MAN的大小.
解答:解:(1)設橢圓的方程為
∵焦點坐標為
∴a2=3+b2


解得a2=4,b2=3
所以橢圓方程為
(2)設直線MN的方程為:,
聯(lián)立直線MN和曲線C的方程可得:
得:,
設M(x1,y1),N(x2,y2),A(-2,0),
,

即可得,
點評:求圓錐曲線的方程一般利用待定系數(shù)法;解決直線與圓錐曲線的位置關系問題,一般將直線的方程與橢圓的方程聯(lián)立,消去一個未知數(shù)得到關于一個未知數(shù)的方程,利用韋達定理得到交點坐標的關系找突破口.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

橢圓的兩焦點坐標分別為F1(-
3
,0)
F2(
3
,0)
,且橢圓過點(1,-
3
2
)

(1)求橢圓方程;
(2)過點(-
6
5
,0)
作不與y軸垂直的直線l交該橢圓于M、N兩點,A為橢圓的左頂點,試判斷∠MAN的大小是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省高三下學期第一次月考文科數(shù)學試卷 題型:解答題

橢圓的兩焦點坐標分別為,且橢圓過點

(1)求橢圓方程;

(2)過點作不與軸垂直的直線交該橢圓于兩點,為橢圓的左頂點,試判斷的大小是否為定值,并說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013年高考數(shù)學壓軸大題訓練:解析幾何中的定值、定點問題(解析版) 題型:解答題

橢圓的兩焦點坐標分別為,且橢圓過點
(1)求橢圓方程;
(2)過點作不與y軸垂直的直線l交該橢圓于M、N兩點,A為橢圓的左頂點,試判斷∠MAN的大小是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:江西省會昌中學2011-2012學年高三下學期第一次月考試題數(shù)學文 題型:解答題

 橢圓的兩焦點坐標分別為,且橢圓過點

(1)求橢圓方程;

(2)過點作不與軸垂直的直線交該橢圓于兩點,為橢圓的左頂點,試判斷的大小是否為定值,并說明理由.

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案