已知函數(shù)f(x)=4x2-4mx+m2-2m+2的圖象與x軸有兩個(gè)交點(diǎn)
(1)設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,試判斷函數(shù)g(m)=x12+x22有沒(méi)有最大值或最小值,并說(shuō)明理由.
(2)若f(x)=4x2-4mx+m2-2m+2與g(x)=
mx
在區(qū)間[2,3]上都是減函數(shù),求實(shí)數(shù)m的取值范圍.
分析:(1)由函數(shù)f(x)圖象與x軸有兩個(gè)交點(diǎn)可得m的范圍,由韋達(dá)定理可得x1+x2=m,x1x2=
m2-2m+2
4
,從而g(m)可表示為m的函數(shù),根據(jù)二次函數(shù)性質(zhì)可判斷其最值情況;
(2)由題意可得:
m>0
m>1
-
-4m
2×4
≥3
,解出即可;
解答:解:由△=16m2-16(m2-2m+2)>0,得m>1,
(1)∵x1+x2=m,x1x2=
m2-2m+2
4
,
∴g(m)=x12+x22=(x1+x2)2-2x1x2=m2-
m2-2m+2
2
=
(m+1)2-3
2
,
∵m>1,∴g(m)沒(méi)有最大值,也沒(méi)有最小值;
(2).依題意得:
m>0
m>1
-
-4m
2×4
≥3
,解得m≥6.
所以實(shí)數(shù)m的取值范圍為:m≥6.
點(diǎn)評(píng):本題考查二次函數(shù)的單調(diào)性、最值問(wèn)題,深刻理解“三個(gè)二次”間的關(guān)系是解決該類問(wèn)題的基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-
4+
1
x2
,數(shù)列{an},點(diǎn)Pn(an,-
1
an+1
)在曲線y=f(x)上(n∈N+),且a1=1,an>0.
( I)求數(shù)列{an}的通項(xiàng)公式;
( II)數(shù)列{bn}的前n項(xiàng)和為Tn且滿足bn=an2an+12,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-
4-x2
在區(qū)間M上的反函數(shù)是其本身,則M可以是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=4+ax-1(a>0且a≠1)的圖象恒過(guò)定點(diǎn)P,則P點(diǎn)的坐標(biāo)是
(1,5)
(1,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
4-x
的定義域?yàn)锳,B={x|2x+3≥1}.
(1)求A∩B;
(2)設(shè)全集U=R,求?U(A∩B);
(3)若Q={x|2m-1≤x≤m+1},P=A∩B,Q⊆P,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
(4-
a
2
)x+4,  x≤6
ax-5,     x>6
(a>0,a≠1),數(shù)列{an}滿足an=f(n)(n∈N*),且{an}是單調(diào)遞增數(shù)列,則實(shí)數(shù)a的取值范圍( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案