精英家教網 > 高中數學 > 題目詳情
對某型號1000只燈泡的使用壽命(單位:小時)統(tǒng)計如下表所示:
(1)從這1000只燈泡中任選1只,求該燈泡壽命不足1500小時的概率;
(2)從這1000只燈泡中任選3只燈泡,求至多有2只燈泡壽命不足1500小時的概率.
【答案】分析:(1)從這1000只燈泡中任選1只,求該燈泡壽命不足1500小時的事件,包括該燈泡壽命為500到1000小時,和1000到1500小時兩種情況,故我們只要根據統(tǒng)計表中數據計算出滿足條件的燈泡的個數,然后代入概率公式即可求解.
(2)至多有2只燈泡壽命不足1500小時的對立事件是,三個燈泡的壽命都不足1500小時,結合(1)中結論,我們可以求出三個燈泡的壽命都不足1500小時的概率,然后再根據對立事件概率減法公式,進行求解.
解答:解:(1)該燈泡的使用壽命不足1500小時的概率(6分)
(2)至多有2只燈泡使用壽命不足1500小時的概率(12分)
答:從這1000只燈泡中任選1只燈泡使用壽命不足1500小時的概率等于;
從這1000只燈泡中任選3只,至多有2只燈泡使用壽命不足1500小時的概率等于.(13分)
點評:本題考查的知識點是等可能事件的概率,要想計算一個事件的概率,首先我們要分析這個事件是分類的(分幾類)還是分步的(分幾步),然后再利用加法原理和乘法原理進行求解.如果一個直接求一個事件的概率分類比較復雜,我們可以先求出其對立事件的概率,再利用對立事件概率減法公式,進行求解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對某型號1000只燈泡的使用壽命(單位:小時)統(tǒng)計如下表所示:精英家教網
(1)從這1000只燈泡中任選1只,求該燈泡壽命不足1500小時的概率;
(2)從這1000只燈泡中任選3只燈泡,求至多有2只燈泡壽命不足1500小時的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

21、某會議室用5盞燈照明,每盞燈各使用燈泡一只,且型號相同.假定每盞燈能否正常照明只與燈泡的壽命有關,該型號的燈泡壽命為1年以上的概率為p1,壽命為2年以上的概率為p2.從使用之日起每滿1年進行一次燈泡更換工作,只更換已壞的燈泡,平時不換.
(Ⅰ)在第一次燈泡更換工作中,求不需要換燈泡的概率和更換2只燈泡的概率;
(Ⅱ)在第二次燈泡更換工作中,對其中的某一盞燈來說,求該盞燈需要更換燈泡的概率;
(Ⅲ)當p1=0.8,p2=0.3時,求在第二次燈泡更換工作,至少需要更換4只燈泡的概率(結果保留兩個有效數字).

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年豐臺區(qū)二模)(13分)

對某型號1000只燈泡的使用壽命(單位:小時)統(tǒng)計如下表所示:

壽命分組

燈泡個數

172

428

392

71

   (I)從這1000只燈泡中任選1只,求該燈泡壽命不足1500小時的概率;

   (II)從這1000只燈泡中任選3只燈泡,求至多有2只燈泡壽命不足1500小時的概率。

查看答案和解析>>

科目:高中數學 來源:2009年北京市豐臺區(qū)高考數學二模試卷(文科)(解析版) 題型:解答題

對某型號1000只燈泡的使用壽命(單位:小時)統(tǒng)計如下表所示:
(1)從這1000只燈泡中任選1只,求該燈泡壽命不足1500小時的概率;
(2)從這1000只燈泡中任選3只燈泡,求至多有2只燈泡壽命不足1500小時的概率.

查看答案和解析>>

同步練習冊答案