【題目】設(shè)是等比數(shù)列的公比大于,其前項和為,是等差數(shù)列,已知,,,.
(1)求,的通項公式
(2)設(shè),數(shù)列的前項和為,求;
(3)設(shè),其中,求
【答案】(1),;(2);(3).
【解析】
(1)設(shè)等比數(shù)列的公比為,則,設(shè)等差數(shù)列的公差為,利用等比數(shù)列的通項公式可求得的值,利用等差數(shù)列的通項公式建立有關(guān)和的方程組,解出這兩個未知數(shù),再利用等比數(shù)列和等差數(shù)列的通項公式可求得這兩個數(shù)列的通項公式;
(2)由,利用裂項相消法可求得;
(3)求得,可得,通過分組求和以及錯位相減法即可得出結(jié)果.
(1)設(shè)等比數(shù)列的公比為,則,設(shè)等差數(shù)列的公差為,
,由,得,,解得,則.
由,得,解得,則;
(2),
;
(3)由,其中
可得,
,
其中,
設(shè),
則,
兩式相減得
整理得,
則,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,.
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)當(dāng),且時,
(i)若有兩個極值點,,求證:;
(ii)若對任意的,都有成立,求正實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, .
(Ⅰ)若是的必要條件,求實數(shù)的取值范圍;
(Ⅱ)若,“或”為真命題,“且”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率統(tǒng)計表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
15 | 0.30 | |
29 | ||
2 | ||
合計 | 1 |
(1)求出表中,及圖中的值;
(2)若該校高三學(xué)生人數(shù)有500人,試估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于的一元二次方程.
(1)若是從四個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求上述方程有兩個不等實根的概率.
(2)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與拋物線:的準線交于,兩點,且.
(1)求拋物線的方程;
(2)若直線:與曲線交于,兩點,且曲線上存在兩點,關(guān)于直線對稱,求實數(shù)的取值范圍及的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若是函數(shù)的極值點,求的極小值;
(2)若對任意的實數(shù)a,函數(shù)在上總有零點,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點到直線的距離比到點的距離大
(1)求動點的軌跡的方程;
(2)為上兩點,為坐標原點,,過分別作的兩條切線,相交于點,求面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com