【題目】已知:在平面四邊形ABCD中,,(如圖1),若將沿對角線BD折疊,使(如圖2.請在圖2中解答下列問題.

1)證明:

2)求三棱錐的高.

【答案】1)證明見解析;(2

【解析】

(1)在圖1中,根據(jù)平面幾何知識可得BC=1且∠CBD90°,在圖2中可以得到AC2=AB2+CB2,從而可證明BC⊥平面ABD從而可證明結(jié)論.

(2)由(1)有,用等體積法有.

證明:法1:由左圖知,

BDC中,∠CBD135°-45°=90°,

BDC75°-45°=30°

,所以BC=1

又在右圖中,因為AC,ABAD,所以AC2=AB2+CB2

所以BCAB

又因為∠CBD90°,所以BC⊥平面ABD

所以BCAD

2:如右圖,設BD的中點為O,連結(jié)A0,CO,因為∠A90°,ABAD

由左圖知,在BDC中,∠CBD135°-45°=90°

BDC75°-45°=30°,所以BC=1,所以

又因為AC,所以AC2=AO2+CO2

所以AOCO,所以AO⊥平面BCD,所以平面ABD⊥平面BCD,又∠CBD=90°

所以BC⊥平面ABD, 所以BCAD

2)因為ABAD,ACCD2=BC2+BD2=4

所以CD2=AC2+AD2,所以ACAD

設三棱錐BADC的高為h,則

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率,點是橢圓上的一個動點,面積的最大值是

(1)求橢圓的方程;

(2)若是橢圓上不重合的四點,相交于點,,且,求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)設,求函數(shù)在區(qū)間上的最小值;

3)某同學發(fā)現(xiàn):總存在正實數(shù),,使,試問:該同學的判斷是否正確?若不正確,請說明理由;若正確,請直接寫出的取值范圍(不需要解答過程).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某人的月工資由基礎工資和績效工資組成2010年每月的基礎工資為2100元、績效工資為2000元從2011年起每月基礎工資比上一年增加210元、績效工資為上一年的照此推算,此人2019年的年薪為______萬元(結(jié)果精確到)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值來衡量,質(zhì)量指標值越大表明質(zhì)量越好,記其質(zhì)量指標值為,當時,產(chǎn)品為一級品;當時,產(chǎn)品為二級品,當時,產(chǎn)品為三級品,現(xiàn)用兩種新配方(分別稱為配方和配方)做實驗,各生產(chǎn)了件這種產(chǎn)品,并測量了每件產(chǎn)品的質(zhì)量指標值,得到下面的試驗結(jié)果 :(以下均視頻率為概率)

配方的頻數(shù)分配表:

指標值分組

頻數(shù)

配方的頻數(shù)分配表:

指標值分組

頻數(shù)

(1)若從配方產(chǎn)品中有放回地隨機抽取件,記“抽出的配方產(chǎn)品中至少件二級品”為事件,求事件發(fā)生的概率;

(2)若兩種新產(chǎn)品的利潤率與質(zhì)量指標滿足如下關系:,其中,從長期來看,投資哪種配方的產(chǎn)品平均利潤率較大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】5名男生和4名女生中選出4人參加辯論比賽.

1)如果男生中的甲與女生中的乙至少要有1人在內(nèi),那么有多少種不同選法?

2)如果4個人中既有男生又有女生,那么有多少種不同選法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為提高衡水市的整體旅游服務質(zhì)量,市旅游局舉辦了旅游知識競賽,參賽單位為本市內(nèi)各旅游協(xié)會,參賽選手為持證導游.現(xiàn)有來自甲旅游協(xié)會的導游3名,其中高級導游2名;乙旅游協(xié)會的導游3名,其中高級導游1名.從這6名導游中隨機選擇2人參加比賽.

(1)求選出的2名都是高級導游的概率;

(2)為了進一步了解各旅游協(xié)會每年對本地經(jīng)濟收入的貢獻情況,經(jīng)多次統(tǒng)計得到,甲旅游協(xié)會對本地經(jīng)濟收入的貢獻范圍是(單位:萬元),乙旅游協(xié)會對本地經(jīng)濟收入的貢獻范圍是(單位:萬元),求甲旅游協(xié)會對本地經(jīng)濟收入的貢獻不低于乙旅游協(xié)會對本地經(jīng)濟收入的貢獻概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面是菱形,且,平面平面,,,O的中點.

1)求證:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)yfx),若在其定義域內(nèi)存在x0,使得x0fx0)=1成立,則稱函數(shù)fx)具有性質(zhì)M

1)下列函數(shù)中具有性質(zhì)M的有____

fx)=﹣x+2

fx)=sinxx[0,2π]

fx)=x,(x∈(0,+∞))

fx

2)若函數(shù)fx)=a|x2|1)(x[1,+∞))具有性質(zhì)M,則實數(shù)a的取值范圍是____

查看答案和解析>>

同步練習冊答案