一個四棱錐P-ABCD的正視圖是邊長為2的正方形及其一條對角線,側視圖和俯視圖全全等的等腰直角三角形,直角邊長為2,直觀圖如圖.

       (1)求四棱錐P-ABCD的體積:

       (2)求直線PC和面PAB所成線面角的余弦值;

       (3)M為棱PB上的一點,當PM長為何值時,CM⊥PA?

(1)VP-ABCD=SABCD·PD=

       (2)以D為坐標原點,建立     設為平面PAB的法向量

       ,PC與所成角,有

,PC與PAB所成角為  

∴余弦值為

(3)由M在棱PB上,,得M(

即當|PM|=|PB|=

CM⊥PA

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知正三棱錐P-ABC的四個頂點都在同一球面上,其中底面的三個頂點在該球的一個大圓上.若正三棱錐的高為1,則球的半徑為
 
,P,A兩點的球面距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

側棱長為a的正三棱錐P-ABC的側面都是直角三角形,且四個頂點都在一個球面上,則該球的表面積為(  )
A、
2
πa2
B、2πa2
C、
3
πa2
D、3πa2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐P-ABC中,給出下列四個命題:
①如果PA⊥BC,PB⊥AC,那么點P在平面ABC內的射影是△ABC的垂心;
②如果點P到△ABC的三邊所在直線的距離都相等,那么點P在平面ABC內的射影是△ABC的內心;
③如果棱PA和BC所成的角為60°,PA=BC=2,E、F分別是棱PB、AC的中點,那么EF=1;
④如果三棱錐P-ABC的各條棱長均為1,則該三棱錐在任意一個平面內的射影的面積都不大于
12

其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐P-ABC中,給出下列四個命題:
①如果PA⊥BC,PB⊥AC,那么點P在平面ABC內的射影是△ABC的垂心;
②如果點P到△ABC的三邊所在直線的距離都相等,那么點P在平面ABC內的射影是△ABC的內心;
③如果棱PA和BC所成的角為60?,PA=BC=2,E、F分別是棱PB、AC的中點,那么EF=1;
④三棱錐P-ABC的各棱長均為1,則該三棱錐在任意一個平面內的射影的面積都不大于
1
2

⑤如果三棱錐P-ABC的四個頂點是半徑為1的球的內接正四面體的頂點,則P與A兩點間的球面距離為π-arccos
1
3

其中正確命題的序號是
①④⑤
①④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網已知如圖在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,PA=AC=BC=1,若三棱錐P-ABC的四個頂點都在某一個球面上,則該球的表面積為(  )
A、3π
B、4π
C、
3
π
2
D、12π

查看答案和解析>>

同步練習冊答案