精英家教網 > 高中數學 > 題目詳情
已知點A(0,1),B(4,2),若點P在坐標軸上,則滿足PA⊥PB的點P的個數是(  )
分析:當點P在x軸上時,設其坐標為P(x,0),可得
0-1
x-0
×
0-2
x-4
=-1,解之即可;當點P在y軸上時,PA無斜率,只有PB的斜率為0,只有1點滿足,綜合可得.
解答:解:當點P在x軸上時,設其坐標為P(x,0),
由PA⊥PB可得
0-1
x-0
×
0-2
x-4
=-1,即x2-4x+2=0,
由于△=(-4)2-4×1×2=8>0,
故方程兩解,有兩個點符合題意;
當點P在y軸上時,PA無斜率,只有PB的斜率為0,
故P的坐標為(0,2).
綜上可知:滿足PA⊥PB的點P的個數是3個
故選C
點評:本題考查兩直線垂直于斜率的關系,涉及分類討論的思想,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,已知點A(0,-1),B點在直線y=-3上,M點滿足
MB
OA
,
MA
AB
=
MB
BA
,M點的軌跡為曲線C.
(Ⅰ)求C的方程;
(Ⅱ)P為C上的動點,l為C在P點處的切線,求O點到l距離的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點A(0,1)和橢圓
x22
+y2=1上的任意一點B,則|AB|最大值為
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

i
j
為直角坐標平面內x、y軸正方向上的單位向量,若向量
p
=(x+m)
i
+y
j
q
=(x-m)
i
+y
j
,(x,y∈R,m≥2),且|
p
|-|
q
|=4

(1)求動點M(x,y)的軌跡方程?并指出方程所表示的曲線;
(2)已知點A(0,1},設直線l:y=
1
2
x-3與點M的軌跡交于B、C兩點,問是否存在實數m,使得
AB
AC
=
9
2
?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點A(0,1),B,C是x軸上兩點,且|BC|=6(B在C的左側).設△ABC的外接圓的圓心為M.
(Ⅰ)已知
AB
AC
=-4
,試求直線AB的方程;
(Ⅱ)當圓M與直線y=9相切時,求圓M的方程;
(Ⅲ)設|AB|=l1,|AC|=l2,s=
l1
l2
+
l2
l1
,試求s的最大值.

查看答案和解析>>

同步練習冊答案