19.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則此幾何體的表面積為( 。
A.8+4$\sqrt{3}$B.8+4$\sqrt{2}$C.8+16$\sqrt{2}$D.8+8$\sqrt{2}$

分析 由三視圖知該幾何體是三棱錐,由三視圖求出棱長(zhǎng)、判斷出線面的位置關(guān)系,由條件和面積公式求出各個(gè)面的面積,加起來(lái)求出幾何體的表面積.

解答 解:根據(jù)三視圖和題意知幾何體是三棱錐P-ABC,
直觀圖如圖所示:
D是AC的中點(diǎn),PB⊥平面ABC,且PD=BD=2,
∴PB⊥AB,PB⊥BC,PB⊥BD,則PB=2$\sqrt{2}$,
∵底面△ABC是等腰三角形,AB=BC=2$\sqrt{2}$,AC=4,
∴PA=PC=2$\sqrt{2}$,
∴該幾何體的表面積S=$\frac{1}{2}×4×2×2+2×\frac{\sqrt{3}}{4}×(2\sqrt{2})^{2}$=8+4$\sqrt{3}$,
故選A.

點(diǎn)評(píng) 本題考查了由三視圖求幾何體的表面積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查了空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}滿足a1=9,其前n項(xiàng)和為Sn,對(duì)n∈N*,n≥2,都有Sn=3(Sn-1+3)
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;  
(Ⅱ)求證:數(shù)列{Sn+$\frac{9}{2}$}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.計(jì)算下列各式的值:
(1)${27^{\frac{1}{3}}}+{2^{-1}}-{π^0}+{(\sqrt{8})^{-\frac{2}{3}}}$;    
(2)(lg2)2+lg2×lg50+lg25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知橢圓的一個(gè)焦點(diǎn)為F(0,1),離心率$e=\frac{1}{2}$,則橢圓的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.直線l的方程為y=x+3,P為l上任意一點(diǎn),過(guò)點(diǎn)P且以雙曲線12x2-4y2=3的焦點(diǎn)為焦點(diǎn)作橢圓,那么具有最短長(zhǎng)軸的橢圓方程為( 。
A.$\frac{x^2}{5}+\frac{y^2}{4}=1$B.$\frac{x^2}{5}+\frac{y^2}{2}=1$C.$\frac{x^2}{25}+\frac{y^2}{16}=1$D.$\frac{x^2}{10}+\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=$\frac{{x}^{2}}{{3}^{x}-1}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.等差數(shù)列{an}中,a3+a4=4,a5+a7=6,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-2|},(x≠2)}\\{1,(x=2)}\end{array}\right.$,若關(guān)于x的方程f2(x)+af(x)+b=3有三個(gè)不同實(shí)數(shù)解x1,x2,x3,則下列選項(xiàng)正確的是( 。
A.a+b=0B.x1+x3>2x2C.x1+x3=5D.x12+x22+x32=14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.直線l1:(a+3)x+y-4=0與直線l2:x+(a-1)y+4=0垂直,則直線l1在x軸上的截距是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案