已知函數(shù)
(1)當(dāng)a=1時(shí),求曲線在點(diǎn)(3,)處的切線方程
(2)求函數(shù)的單調(diào)遞增區(qū)間
; ⑵見(jiàn)解析

試題分析:⑴求曲線在某一點(diǎn)的切線方程,要求出斜率,則要先求出導(dǎo)函數(shù),有斜率再求切線方程時(shí)用斜截式就可以直接求出;⑵一般求函數(shù)的單調(diào)區(qū)間都會(huì)和函數(shù)的導(dǎo)函數(shù)相聯(lián)系,在本題中要注意還有參數(shù),所以在對(duì)導(dǎo)函數(shù)進(jìn)行討論時(shí)要對(duì)的取值進(jìn)行討論,要求函數(shù)的單調(diào)增區(qū)間即是求其導(dǎo)函數(shù)大于0時(shí)對(duì)應(yīng)的的取值集合,關(guān)鍵是利用分類(lèi)討論的思想對(duì)進(jìn)行討論,注意不要漏掉任何一種可能的情況.
試題解析:(1)由已知得,其中,
,∴,
切線方程:;                      4分
(2),
,                        .6分
當(dāng)時(shí),,∴,∴單調(diào)遞增,       .7分
當(dāng),若,則,
當(dāng),單調(diào)遞增,
當(dāng) 上無(wú)遞增區(qū)間,
當(dāng)單調(diào)遞增,                   .11分
當(dāng)時(shí),時(shí),單調(diào)遞增,                   .12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)為函數(shù)的導(dǎo)函數(shù).
(1)設(shè)函數(shù)f(x)的圖象與x軸交點(diǎn)為A,曲線y=f(x)在A點(diǎn)處的切線方程是,求的值;
(2)若函數(shù),求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)
(1) 當(dāng)時(shí),求的單調(diào)區(qū)間;
(2) 若當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)有極小值
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)若,且對(duì)任意恒成立,求的最大值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某自來(lái)水公司要在公路兩側(cè)排水管,公路為東西方向,在路北側(cè)沿直線排,在路南側(cè)沿直線排,現(xiàn)要在矩形區(qū)域內(nèi)沿直線將接通.已知,,公路兩側(cè)排管費(fèi)用為每米1萬(wàn)元,穿過(guò)公路的部分的排管費(fèi)用為每米2萬(wàn)元,設(shè)所成的小于的角為

(Ⅰ)求矩形區(qū)域內(nèi)的排管費(fèi)用關(guān)于的函數(shù)關(guān)系式;
(Ⅱ)求排管的最小費(fèi)用及相應(yīng)的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線在點(diǎn)處的切線方程為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知R上可導(dǎo)函數(shù)的圖像如圖所示,則不等式的解集為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

規(guī)定其中,為正整數(shù),且=1,這是排列數(shù)(是正整數(shù),)的一種推廣.
(Ⅰ) 求的值;
(Ⅱ)排列數(shù)的兩個(gè)性質(zhì):①,②(其中m,n是正整數(shù)).是否都能推廣到(,是正整數(shù))的情形?若能推廣,寫(xiě)出推廣的形式并給予證明;若不能,則說(shuō)明理由;
(Ⅲ)已知函數(shù),試討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),則=          .

查看答案和解析>>

同步練習(xí)冊(cè)答案