已知圓x2+y2=4和圓外一點(diǎn)p(-2,-3),求過(guò)點(diǎn)p的圓的切線方程.
分析:由圓的方程找出圓心坐標(biāo)和半徑r,當(dāng)切線方程的斜率不存在時(shí),顯然x=-2滿(mǎn)足題意;當(dāng)切線方程的斜率存在時(shí),設(shè)斜率為k,由P的坐標(biāo)和k表示出切線方程,利用點(diǎn)到直線的距離公式表示出圓心到切線的距離d,根據(jù)d=r列出關(guān)于k的方程,求出方程的解,得到k的值,確定出此時(shí)切線的方程,綜上,得到所有滿(mǎn)足題意的切線方程.
解答:解:由圓x2+y2=4,得到圓心坐標(biāo)為(0,0),半徑r=2,
當(dāng)過(guò)P的切線方程斜率不存在時(shí),顯然x=-2為圓的切線;
當(dāng)過(guò)P的切線方程斜率存在時(shí),
設(shè)斜率為k,p(-2,-3),
∴切線方程為y+3=k(x+2),即kx-y+2k-3=0,
∵圓心到切線的距離d=
|2k-3|
k2+1
=r=2,
解得:k=
5
12

此時(shí)切線方程為5x-12y-26=0,
綜上,切線方程為x=-2或5x-12y-26=0.
點(diǎn)評(píng):此題考查了圓的切線方程,涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,直線的點(diǎn)斜式方程,利用了分類(lèi)討論的思想,是高考中?嫉念}型.本題易漏掉特殊情況導(dǎo)致錯(cuò)誤
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、已知圓x2+y2=4,過(guò)A(4,0)作圓的割線ABC,則弦BC中點(diǎn)的軌跡方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓x2+y2=4上恰有兩個(gè)點(diǎn)到直線4x-3y+c=0的距離為1,則實(shí)數(shù)c的取值范圍是
(-15,-5)∪(5,15)
(-15,-5)∪(5,15)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓x2+y2=4內(nèi)一定點(diǎn)M(0,1),經(jīng)M且斜率存在的直線交圓于A(x1,y1)、B(x2,y2)兩點(diǎn),過(guò)點(diǎn)A、B分別作圓的切線l1,l2.設(shè)切線l1,l2交于點(diǎn)Q.
(1)設(shè)點(diǎn)P(x0,y0)是圓上的點(diǎn),求證:過(guò)P的圓的切線方程是
x
 
0
x+y0y=4

(2)求證Q在一定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓x2+y2=4上有且僅有三個(gè)點(diǎn)到直線12x-5y+c=0的距離為1,則實(shí)數(shù)c的值是
±13
±13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓x2+y2=4及點(diǎn)P(1,1),則過(guò)點(diǎn)P的直線中,被圓截得的弦長(zhǎng)最短時(shí)的直線的方程是
x+y-2=0
x+y-2=0

查看答案和解析>>

同步練習(xí)冊(cè)答案