已知以點(diǎn)為圓心的圓與直線相切.過點(diǎn)的動(dòng)直線與圓相交于兩點(diǎn),的中點(diǎn).

(1)求圓的方程;

(2)當(dāng)時(shí),求直線的方程.(用一般式表示)

 

【答案】

(1)(2)

【解析】

試題分析:(1)設(shè)圓的半徑為

由于圓與直線相切,

∴圓A的方程為

(2)①當(dāng)直線軸垂直時(shí),易知符合題意;

②當(dāng)直線軸不垂直時(shí),設(shè)直線的方程為

       

連接,則

       ∴

則由,得

∴直線

故直線的方程為

考點(diǎn):圓的標(biāo)準(zhǔn)方程及直線與圓相交相切的位置關(guān)系

點(diǎn)評(píng):直線與圓相切:圓心到直線的距離等于半徑;直線與圓相交:圓心到直線的距離,圓的半徑,弦長(zhǎng)的一半構(gòu)成直角三角形

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北武漢部分重點(diǎn)中學(xué)高二上期中考試?yán)頂?shù)學(xué)試卷(帶解析) 題型:解答題

(本小題滿分14分)如圖所示,已知以點(diǎn)為圓心的圓與直線相切.過點(diǎn)的動(dòng)直線與圓相交于兩點(diǎn),的中點(diǎn),直線相交于點(diǎn).

(1)求圓的方程;
(2)當(dāng)時(shí),求直線的方程.
(3)是否為定值?如果是,求出其定值;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河南省高三年級(jí)12月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,已知以點(diǎn) 為圓心的圓與直線 相切,過點(diǎn)的動(dòng)直線 與圓 相交于兩點(diǎn),的中點(diǎn),直線相交于點(diǎn) .

(1)求圓的方程;

(2)當(dāng)時(shí),求直線的方程;

(3)是否為定值?如果是,求出其定值;如果不是,請(qǐng)說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖北武漢部分重點(diǎn)中學(xué)高二上期中考試?yán)頂?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)如圖所示,已知以點(diǎn)為圓心的圓與直線相切.過點(diǎn)的動(dòng)直線與圓相交于兩點(diǎn),的中點(diǎn),直線相交于點(diǎn).

(1)求圓的方程;

(2)當(dāng)時(shí),求直線的方程.

(3)是否為定值?如果是,求出其定值;如果不是,請(qǐng)說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題滿分15分)

已知以點(diǎn)為圓心的圓與x軸交于點(diǎn)O、A,與y軸交于點(diǎn)O、B,其中O為原點(diǎn)。

(Ⅰ)求證:△AOB的面積為定值;

(Ⅱ)設(shè)直線2x+y-4=0與圓C交于點(diǎn)M、N,若,求圓C的方程;

(Ⅲ)在(Ⅱ)的條件下,設(shè)P、Q分別是直線l:x+y+2=0和圓C的動(dòng)點(diǎn),求的最小值及此時(shí)點(diǎn)P的坐標(biāo)。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案