(14分)設橢圓的對稱中心為坐標原點,其中一個頂點為,右焦點與點

的距離為

(1)求橢圓的方程;

(2)是否存在經(jīng)過點的直線,使直線與橢圓相交于不同的兩點滿足?若存在,求出直線的方程;若不存在,請說明理由.

 

 

【答案】

解:(1)依題意,設橢圓方程為,則其右焦點坐標為

,由,得,即

.又∵,∴,從而可得橢圓方程為.-----------6分

(2)由題意可設直線的方程為,由知點在線段的垂直平分線上,

消去,即可得方程(*)

當方程(*)的時方程(*)有兩個不相等的實數(shù)根.

,,線段的中點,則是方程(*)的兩個不等的實根,故有.從而有  ,

于是,可得線段的中點的坐標為

又由于,因此直線的斜率為,

,得,即,解得,∴

∴綜上可知存在直線滿足題意.--------------14分

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設橢圓的對稱中心為坐標原點,其中一個頂點為A(0,2),右焦點F與點B(
2
 , 
2
)
的距離為2.
(1)求橢圓的方程;
(2)是否存在經(jīng)過點(0,-3)的直線l,使直線l與橢圓相交于不同的兩點M,N滿足|
AM
|=|
AN
|
?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:0127 模擬題 題型:解答題

設橢圓的對稱中心為坐標原點,其中一個頂點為A(0,2),右焦點F與點B(,)的距離為2。
(1)求橢圓的方程;
(2)是否存在經(jīng)過點(0,-2)的直線l,使直線l與橢圓相交于不同的兩點M,N滿足?若存在,求直線l的傾斜角α;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題13分) 設橢圓的對稱中心為坐標原點,其中一個頂點為,右焦點與點的距離為.

(1)求橢圓的方程;

(2)是否存在經(jīng)過點的直線,使直線與橢圓相交于不同的兩點滿足?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年廣西河池市、柳州市、貴港市、欽州市高三1月模擬數(shù)學試卷(文科)(解析版) 題型:解答題

設橢圓的對稱中心為坐標原點,其中一個頂點為A(0,2),右焦點F與點的距離為2.
(1)求橢圓的方程;
(2)是否存在經(jīng)過點(0,-3)的直線l,使直線l與橢圓相交于不同的兩點M,N滿足?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案