設曲線f(x)=2ax3-a在點(1,a)處的切線與直線2x-y+1=0平行,則實數(shù)a的值為   
【答案】分析:先求出函數(shù)f(x)=2ax3-a的導數(shù),進而求得函數(shù)在x=1處得導數(shù)為6a,再利用兩直線平行的判斷定理便可求出a的值.
解答:解:f(x)=2ax3-a在點(1,a)處的切線與直線2x-y+1=0平行.
曲線f(x)=2ax3-a的導數(shù)為f′(x)=6ax2
在x=1處的值為f′(1)=6a.
∴f(x)=2ax3-a在(1,a)的斜率為6a.
直線2x-y+1=0在x=1處的斜率為2.
∴6a=2,
解得a=
故答案為
點評:本題主要考查學生會利用導數(shù)求曲線上過某點切線方程的斜率和兩直線平行的判斷,以及對導數(shù)的綜合掌握,解題時注意轉化思想的運用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)=ax3+bx2+cx(a>b>c),已知函數(shù)f(x)在x=1處取得極值,且曲線f(x)在x=t處的切線斜率為-2a.
(1)求
c
a
的取值范圍;
(2)若函數(shù)f(x)的單調(diào)遞減區(qū)間為[m,n],求|m-n|的最小值;
(3)判斷曲線f(x)在x=t-
8
3
處的切線斜率的正負,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax2+bx+c(a≠0),曲線y=f(x)通過點(0,2a+3),且在點(-1,f(-1))
處的切線垂直于y軸.
(Ⅰ)用a分別表示b和c;
(Ⅱ)當bc取得最小值時,求函數(shù)g(x)=-f(x)e-x的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax2+bx+c(a,b,c為實數(shù),且a≠0),F(x)=
f(x)
,&x>0
-f(x),?x<0.

(1)若f(-1)=0,曲線y=f(x)通過點(0,2a+3),且在點(-1,f(-1))處的切線垂直于y軸,求F(x)的表達式;
(2)在(Ⅰ)在條件下,當時,,求實數(shù)k的取值范圍;
(3)設mn<0,m+n>0,a>0,且f(x)為偶函數(shù),證明F(m)+F(n)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax2+bx+c(a,b,c為實數(shù),且a≠0),F(xiàn)(x)=
f(x),x>0
-f(x),x<0

(1)若f(-1)=0,曲線y=f(x)通過點(0,2a+3),且在點(-1,f(-1))處的切線垂直于y軸,求f(x)的表達式;
(2)在(Ⅰ)在條件下,當x∈[-1,1]時,g(x)=kx-f(x)是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)設mn<0,m+n>0,a>0,且f(x)為偶函數(shù),證明F(m)+F(n)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax2+bx+c(a≠0),曲線y=f(x)通過點(0,2a+3),且在x=1處的切線垂直于y軸.
(Ⅰ)用a分別表示b和c;
(Ⅱ)當bc取得最大值時,寫出y=f(x)的解析式;
(Ⅲ)在(Ⅱ)的條件下,g(x)滿足
43
f(x)-6
=(x-2)g(x)(x>2),求g(x)的最大值及相應x值.

查看答案和解析>>

同步練習冊答案