橢圓:的左頂點為,直線交橢圓兩點(下),動點和定點都在橢圓上.
(1)求橢圓方程及四邊形的面積.
(2)若四邊形為梯形,求點的坐標.
(3)若為實數(shù),,求的取值范圍.
(1);.(2). (3).

試題分析:(1)將D的坐標代入即得,從而得橢圓的方程為.
代入.由此可得的面積,二者相加即得四邊形的面積.(2)在橢圓中AP不可能平行BC,四邊形ABCP又為梯形,所以必有,由此可得直線PC的方程,從而求得點P的坐標.(3)設(shè),由得則間的關(guān)系,即,又因為點P在橢圓上,所以,由此可得,這樣利用三角函數(shù)的范圍便可求得的范圍.
(1)因為點D在橢圓上,所以,
所以橢圓的方程為.
易得:,的面積為.
直線BD的方程為,即.所以點A到BD的距離為,,.
所以.
(2)四邊形ABCP為梯形,所以,直線PC的方程為:
.代入橢圓方程得(舍),
代入.所以點P的坐標為.
(3)設(shè),則,即
因為點P在橢圓上,所以,
由此可得
所以.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)(2011•重慶)如圖,橢圓的中心為原點0,離心率e=,一條準線的方程是x=2

(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)動點P滿足:=+2,其中M、N是橢圓上的點,直線OM與ON的斜率之積為﹣,
問:是否存在定點F,使得|PF|與點P到直線l:x=2的距離之比為定值;若存在,求F的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)e是橢圓=1的離心率,且e∈(,1),則實數(shù)k的取值范圍是(  )
A.(0,3)B.(3,)
C.(0,3)∪(,+∞)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知對,直線與橢圓恒有公共點,則實數(shù)的取值范圍是(  )
A.(0, 1)B.(0,5)C.[1,5)D.[1,5)∪(5,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓過點且離心率為
(1)求橢圓的方程;
(2)若斜率為的直線兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點,的坐標分別為,.直線,相交于點,且它們的斜率之積是,記動點的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)是曲線上的動點,直線,分別交直線于點,線段的中點為,求直線與直線的斜率之積的取值范圍;
(3)在(2)的條件下,記直線的交點為,試探究點與曲線的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知直線 和橢圓,橢圓C的離心率為,連結(jié)橢圓的四個頂點形成四邊形的面積為.
(1)求橢圓C的方程;
(2)若直線與橢圓C有兩個不同的交點,求實數(shù)m的取值范圍;
(3)當時,設(shè)直線與y軸的交點為P,M為橢圓C上的動點,求線段PM長度的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知動圓:,則圓心的軌跡是(   )
A.直線  B.圓 C.拋物線的一部分 D.橢圓

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知圓E:,點,P是圓E上任意一點.線段PF的垂直平分線和半徑PE相交于Q.
(1)求動點Q的軌跡的方程;
(2)已知A,B,C是軌跡的三個動點,A與B關(guān)于原點對稱,且,問△ABC的面積是否存在最小值?若存在,求出此時點C的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案