已知M(2,0),N(0,2),點P滿足數(shù)學公式=數(shù)學公式數(shù)學公式,O為坐標原點,則數(shù)學公式數(shù)學公式=________

2
分析:由=,P在MN的中點,利用中點坐標公式求出P的坐標,然后求的值.
解答:M(2,0),N(0,2),點P滿足=,
可知P為MN的中點,所以P(1,1)
所以=(2,0)•(1,1)=2×1+0×1=2
故答案為:2
點評:本題考查平面向量坐標運算,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知定點A(0,-1),點B在圓F:x2+(y-1)2=16上運動,F(xiàn)為圓心,線段AB的垂直平分線交BF于P.
(I)求動點P的軌跡E的方程;若曲線Q:x2-2ax+y2+a2=1被軌跡E包圍著,求實數(shù)a的最小值.
(II)已知M(-2,0)、N(2,0),動點G在圓F內(nèi),且滿足|MG|•|NG|=|OG|2,求
MG
NG
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知M (-2,0),N (4,0),則以MN為斜邊的直角三角形直角頂點P的軌跡方程是
(x-1)2+y2=9(y≠0)
(x-1)2+y2=9(y≠0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知M(-2,0),N(2,0),|PM|-|PN|=3,則動點P的軌跡為
以M,N 為焦點的雙曲線的右支
以M,N 為焦點的雙曲線的右支

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知M(-2,0),N(2,0),|PM|-|PN|=2,則動點P的軌跡是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知M(-2,0),N(2,0),則以MN為斜邊的直角三角形直角頂點P的軌跡方程是
x2+y2=4(x≠±2)
x2+y2=4(x≠±2)

查看答案和解析>>

同步練習冊答案