有下列命題:

①設(shè)集合M={x|0<x≤3},N={x|0<x≤2},則“aM”是“a∈N”的充分而不必要條件;

②命題:“若aM,則bM”的逆否命題是:若bM,則aM

③若pq是假命題,則pq都是假命題;

④命題P:“x0∈R,xx0-1>0”的否定P:“x∈R,x2x-1≤0”.

其中真命題的序號(hào)是________.

 

【答案】

②④

【解析】

試題分析:本題考查的知識(shí)點(diǎn)是,判斷命題真假.(1)考查了集合間的關(guān)系,在集合M中任取一個(gè)x值,看其是否在集合N中,反之,在集合N中任取一個(gè)x值,判斷其是否又在集合M中;(2)考查命題的逆否命題,把原命題的結(jié)論取否定作為條件,條件取否定作為結(jié)論;(3)考查復(fù)合命題的真假判斷,兩個(gè)命題中只要有一個(gè)假命題,則p∧q為假命題;(4)考查特稱命題的否定,注意特稱命題的否定全稱命題的格式.解:對(duì)于①,a在集合M中取值為3,但3不在集合N中,有a∈M,但a?N,所以“a∈M”是“a∈N”的不充分條件,所以①不正確;對(duì)于②,把原命題的結(jié)論取否定作為條件,條件取否定作為結(jié)論,所以,命題“若a∈M,則b?M”的逆否命題是:若b∈M,則a?M,所以命題②正確;

對(duì)于③,假若p,q中有一個(gè)為真命題,則p∧q也是假命題,所以,命題③不正確;對(duì)于④,特稱命題的否定是全稱命題,所以命題P:“x0∈R,xx0-1>0”的否定¬P:“?x∈R,x2-x-1≤0”正確正確,故②④

考點(diǎn):命題的真假判斷

點(diǎn)評(píng):本題考查了命題的真假判斷與運(yùn)用,解答的關(guān)鍵是熟練基本概念,掌握有關(guān)格式,如特稱命題否定的格式 特稱命題P:?x0∈M,p(x0),否定¬p:?x∈M,¬p(x).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是一個(gè)數(shù)集,且至少含有兩個(gè)數(shù),若對(duì)任意a、b∈P,都有a+b、a-b、ab、
ab
∈P(除數(shù)b≠0)則稱P是一個(gè)數(shù)域,例如有理數(shù)集Q是數(shù)域,有下列命題:
①數(shù)域必含有0,1兩個(gè)數(shù);
②整數(shù)集是數(shù)域;
③若有理數(shù)集Q⊆M,則數(shù)集M必為數(shù)域;
④數(shù)域必為無(wú)限集.
其中正確的命題的序號(hào)是
 
.(把你認(rèn)為正確的命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是一個(gè)數(shù)集,且至少含有兩個(gè)數(shù),若對(duì)任意a、b∈P,都有a+b、a-b,ab、
a
b
∈P(除數(shù)b≠0),則稱P是一個(gè)數(shù)域.例如有理數(shù)集Q是數(shù)域;數(shù)集F={a+b
2
|a,b∈Q}
也是數(shù)域.有下列命題:
①整數(shù)集是數(shù)域;②若有理數(shù)集Q⊆M,則數(shù)集M必為數(shù)域;
③數(shù)域必為無(wú)限集;④存在無(wú)窮多個(gè)數(shù)域.
其中正確的命題的序號(hào)是
 
.(把你認(rèn)為正確的命題的序號(hào)填填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列命題:
①命題“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;
②設(shè)p、q為簡(jiǎn)單命題,若“p∨q”為假命題,則“¬p∧¬q為真命題”;
③若p(x)=ax2+2x+1>0,則“?x∈R,p(x)是真命題”的充要條件為 a>1;
④若函數(shù)f(x)為R上的奇函數(shù),當(dāng)x≥0,f(x)=3x+3x+a,則f(-2)=-14;
⑤不等式
x+5
(x-1)2
≥2
的解集是[-
1
2
,3]

其中所有正確的說(shuō)法序號(hào)是
①②③④
①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•梅州二模)設(shè)G是一個(gè)至少含有兩個(gè)數(shù)的數(shù)集,若對(duì)任意a,b∈G,都有a+b,a-b,ab,
a
b
∈G
(除數(shù)b≠0),則稱G是一個(gè)數(shù)域,例如有理數(shù)集Q是數(shù)域.有下列命題:①數(shù)域必含有0,1兩個(gè)數(shù);②整數(shù)集是數(shù)域;③若有理數(shù)集Q⊆M,則數(shù)集M必為數(shù)域;④數(shù)域必為無(wú)限集.其中正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《集合與邏輯》2013年高三數(shù)學(xué)一輪復(fù)習(xí)單元訓(xùn)練(上海交大附中)(解析版) 題型:填空題

有下列命題:
①命題“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;
②設(shè)p、q為簡(jiǎn)單命題,若“p∨q”為假命題,則“¬p∧¬q為真命題”;
③若p(x)=ax2+2x+1>0,則“?x∈R,p(x)是真命題”的充要條件為 a>1;
④若函數(shù)f(x)為R上的奇函數(shù),當(dāng)x≥0,f(x)=3x+3x+a,則f(-2)=-14;
⑤不等式的解集是
其中所有正確的說(shuō)法序號(hào)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案