若a>2,則方程
13
x3-ax2+1=0在(0,2)上恰好有
 
個根.
分析:利用導(dǎo)數(shù)得出函數(shù)在區(qū)間(0,2)內(nèi)單調(diào),再利用函數(shù)零點的判斷方法即可得出答案.
解答:解:設(shè)f(x)=
1
3
x3-ax2+1,則f′(x)=x2-2ax=x(x-2a).
當(dāng)x∈(0,2)時,∵a>2,∴x-2a<0,f′(x)<0,f(x)在(0,2)上為減函數(shù).
又f(0)f(2)=1×(
8
3
-4a+1)=
11
3
-4a<0,
∴f(x)=0在(0,2)上恰好有1個根.
故答案為1.
點評:利用導(dǎo)數(shù)得出函數(shù)在區(qū)間(0,2)內(nèi)單調(diào)且由零點是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(-2,0),B(2,0),M為平面上任一點,若|MA|+|MB|為定值,且cosAMB的最小值為-
13

(1)求M點軌跡C的方程;
(2)過點N(3,0)的直線l與軌跡C及單位圓x2+y2=1自右向左依次交于點P、Q、R、S,若|PQ|=|RS|,則這樣的直線l共有幾條?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且在(0,+∞)上是減函數(shù),若f(
1
3
)>0>f(
2
)
,則方程f(x)=0的根的個數(shù)是( 。
A、2B、2或1C、3D、2或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•杭州模擬)設(shè)圓C:(x-5)2+(y-3)2=5,過圓心C作直線l與圓交于A,B兩點,與x軸交于P點,若A恰為線段BP的中點,則直線l的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(注意:本小題為選做題,A,B兩題選做其中一題,若都做了,則按A題答案給分)
A.當(dāng)x,y滿足條件|x-1|+|y+1|<1時,變量u=
x-1
y-2
的取值范圍是
-
1
3
<u<
1
3
-
1
3
<u<
1
3

B.以直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位.已知直線的極坐標(biāo)方程為θ=
π
4
(ρ∈R),它與曲線
x=1+2cosα
y=2+2sinα
(α為參數(shù))相交于A,B兩點,則以線段AB為直徑的圓的面積為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•西安模擬)(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(坐標(biāo)系與參數(shù)方程)直線3x-4y-1=0被曲線
x=2cosθ
y=1+2sinθ
(θ為參數(shù))所截得的弦長為
2
3
2
3

B.(不等式選講)若關(guān)于x不等式|x-1|+|x-m|<2m的解集為∅,則實數(shù)m的取值范圍為
m≤
1
3
m≤
1
3

C.(幾何證明選講)若Rt△ABC的內(nèi)切圓與斜邊AB相切于D,且AD=1,BD=2,則S△ABC=
2
2

查看答案和解析>>

同步練習(xí)冊答案