精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)
已知拋物線經過橢圓的兩個焦點.設,又不在軸上的兩個交點,若的重心(中線的交點)在拋物線上,

(1)求的方程.
(2)有哪幾條直線與都相切?(求出公切線方程)
(1) 拋物線的方程為:, 橢圓的方程為:
(2) 有3條直線都相切.

試題分析:.解:(1)因為拋物線經過橢圓的兩個焦點,       
所以,即,由 ,             
橢圓的方程為: ,聯(lián)立拋物線的方程         
得:, 解得:(舍去),所以 ,
,所以的重心坐標為.        
因為重心在上,所以,得.所以.              
所以拋物線的方程為:, 橢圓的方程為:.      
(2)因拋物線開口向下且關于y軸對稱,所以與x軸垂直的直線都不是其切線。
所以可設直線y=kx+m與都相切,                            
則由有相等實根                    
                     
  
有3條直線都相切.
點評:解決的關鍵是利用方程的性質得到a,bc的值,同時利用線圓相切的關系來分析結論,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖所示的曲線是由部分拋物線和曲線“合成”的,直線與曲線相切于點,與曲線相切于點,記點的橫坐標為,其中

(1)當時,求的值和點的坐標;
(2)當實數取何值時,?并求出此時直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題13分)已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設O為坐標原點,點A,B分別在橢圓上,,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知橢圓的長軸長是短軸長的倍,則橢圓的離心率等于        .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知焦點在x軸上的雙曲線的漸近線方程是y=±4x,則該雙曲線的離心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

拋物線與直線交于A,B兩點,其中A點的坐標是.該拋物線的焦點為F,則(   )
A.7B.C.6D.5

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知為雙曲線C:的左、右焦點,點上,,則P軸的距離為 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結論:

(1)ABD為二面角A-BC-D的平面角;(2)ACBD;(3) △ACD是等邊三角形;
(4)直線AB與平面BCD成600的角;
其中正確的結論的序號是        。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

過點且與雙曲線有相同漸近線方程的雙曲線的標準方程為     .

查看答案和解析>>

同步練習冊答案