如圖所示,ABCD-A1B1C1D1是棱長為a的正方體,M是棱A1B1的中點,N是棱A1D1的中點.
(1)求異面直線AN與BM所成角的正弦值;
(2)求三棱錐M-DBB1的體積.

【答案】分析:(1)記棱B1C1的中點為G,連接BG、GM、GN,GM與B1D1的交點為H,連接BH,由正方體的幾何特征,結(jié)合異面直線夾角的定義可得,∠MBG是異面直線AN與BM所成的角,利用余弦定理,可得異面直線AN與BM所成角的正弦值;
(2)由已知中B1H是等腰三角形MB1G的頂角平分線,結(jié)合等腰三角形三線合一的性質(zhì),可得BH⊥MH,再由BB1⊥平面A1B1C1D1,可得BB1⊥MH,結(jié)合線面垂直的判定定理,可得MH⊥平面DBB1D1,即MH為三棱錐M-DBB1的高,計算出棱錐的底面積和高后,即可得到三棱錐M-DBB1的體積.
解答:解:(1)記棱B1C1的中點為G,連接BG、GM、GN,GM與B1D1的交點為H,連接BH,如圖所示.…(1分)
∵ABCD-A1B1C1D1是正方體,G、N是中點,
∴GNAB,即ABGN為平行四邊形.
∴BG||AN,∠MBG是異面直線AN與BM所成的角.…(3分)
又正方體的棱長為a,可得BM=BG=a,MG=a.
∴cos∠MBG=. …(6分)
∴sin∠MBG=.…(7分)
(2)∵B1H是等腰三角形MB1G的頂角平分線,
∴H是GM的中點,且BH⊥MH(BH是等腰三角形MBG底邊上的中線).…(9分)
∵BB1⊥平面A1B1C1D1,MH?平面A1B1C1D1,
∴BB1⊥MH.
∴MH⊥平面DBB1D1,即MH為三棱錐M-DBB1的高.…(12分)
=•MH
=a
=(體積單位).  …(14分)
點評:本題考查的知識點是異面直線及其所成的角,棱錐的體積,其中(1)的關(guān)鍵是構(gòu)造出∠MBG是異面直線AN與BM所成的角,(2)的關(guān)鍵是證得MH為三棱錐M-DBB1的高.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,ABCD-A1B1C1D1是長方體,已知AB=3,AD=4,AA1=2,M是棱A1D1的中點,求直線AM與平面BB1D1D所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2008年8月,在北京召開的國際數(shù)學(xué)大會會標(biāo)如圖所示,ABCD是大正方形,四周四個直角三角形圍成一個小正方形,若小正方形的面積是大正方形面積的
125
,求直角三角形中較大的銳角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人設(shè)計一項單人游戲,規(guī)則如下:先將一棋子放在如圖所示正方形ABCD(邊長為3個單位)的頂點A處,然后通過擲骰子來確定棋子沿正方形的邊按逆時針方向行走的單位,如果擲出的點數(shù)為i(i=1,2,3,4,5,6),則棋子就按逆時針方向行走i個單位,一直循環(huán)下去….則某人拋擲三次骰子后,棋子恰好又回到點A處的所有不同走法共有
25
25
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,ABCD是正方形,PA⊥平面ABCD,E、F是AC、PC的中點
(1)求證:AC⊥DF;
(2)若PA=2,AB=1,求三棱錐C-PED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,?ABCD中,AM⊥BC于M,AN⊥CD于N,已知AB=10,BM=5,MC=3,則MN的長為
 

查看答案和解析>>

同步練習(xí)冊答案