一個幾何體的三視圖如圖所示,其中主視圖中△ABC是邊長為2的正三角形,俯視圖為正六邊形,求該幾何體的體積.
考點:由三視圖求面積、體積
專題:計算題,空間位置關(guān)系與距離
分析:該幾何體是正六棱錐,依據(jù)數(shù)據(jù)求解即可.
解答: 解:由三視圖可知幾何體是正六棱錐,底面邊長為1,側(cè)棱長為2,
該幾何體的體積:
1
3
×
3
×6×
1
2
×
3
2
=
3
2
點評:本小題考查三視圖求體積,考查簡單幾何體的三視圖的運用.培養(yǎng)同學(xué)們的空間想象能力和基本的運算能力.基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,AB=3,BC=4,CA=5,則
AB
BC
+
BC
CA
+
CA
AB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的S的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若用0.618法在區(qū)間[1,10]內(nèi)找數(shù)值為9的最佳點,則在第三次試驗時所取的試驗點數(shù)值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,若函數(shù)y=ex+ax,x∈R,有大于-1的極值點,則實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對定義在[0,1]上,并且同時滿足以下兩個條件的函數(shù)f(x)稱為不等函數(shù).
①對任意的x∈[0,1],總有f(x)≥0;
②當(dāng)x1≥0,x2≥0,x1+x2≤1時,總有f(x1+x2)≥f(x1)+f(x2)成立.
已知函數(shù)g(x)=x3與h(x)=2x-a是定義在[0,1]上的函數(shù).
(1)試問函數(shù)g(x)是否為不等函數(shù)?并說明理由;
(2)若函數(shù)h(x)是不等函數(shù),求實數(shù)a組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從集合A={1,2,4,5,10}中任取兩個不同的元素a,b,則
(1)lga+lgb=1的概率為
 

(2)b>2a的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個球的體積是
32
3
π
,這個球的半徑等于( 。
A、
1
2
B、1
C、2
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

京廣高鐵的貫通,帶動了沿線某站點所在市旅游業(yè)的發(fā)展.在車站附近,有一塊邊長為100m的正方形地皮,如圖ABCD所示,其中AST是一半徑為90m的扇形小山,其余部分都是平地.市政府決定在平地上建一個矩形停車場,使矩形的一個頂點P在弧ST上,相鄰兩邊CQ、CR落在正方形的邊BC、CD上.求矩形停車場PQCR面積S的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊答案