4.函數(shù)f(x)=x1nx的零點為( 。
A.0或1B.1C.(1,0)D.(0,0)或(1,0)

分析 直接求解方程,得到結(jié)果即可.

解答 解:函數(shù)f(x)=x1nx的零點就是x1nx=0的解.
顯然x=0(舍去)或x=1.
故選:B.

點評 本題考查函數(shù)的零點與方程的根的關(guān)系,方程的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在數(shù)列{an}中,a1=1,an+1=(-1)n(an +1),記Sn為{an}的前n項和,則S2015=( 。
A.-1008B.-1007C.-1006D.-1005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)y=f(x)在點x0處可導(dǎo),且f′(x0)>0,則曲線y=f(x)在點(x0,f(x0))處切線的傾斜角的范圍是(0,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若α是第二象限角,tan(π-α)=2,則$\frac{sinαcosα}{1+co{s}^{2}α}$=$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在平面直角坐標系xOy中,圓心在坐標原點、半徑為1的圓上有P,Q兩個動點,它們同時從圓上一點A(1,0)出發(fā),分別以每秒$\frac{π}{4}$和$\frac{π}{6}$的旋轉(zhuǎn)角速度按逆時針方向旋轉(zhuǎn).設(shè)弦PQ的中點為M,記P,Q的運動時間為x秒.
(1)當x=6時,求∠QOM的大;
(2)當0<x≤8時,試用x表示線段OM的長度,并求OM長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知定點P(-1,1),長度為2的線段MN的兩個端點M和N分別在x軸和y軸上滑動且始終滿足$\overrightarrow{PQ}$=$\overrightarrow{PN}$+$\overrightarrow{PM}$,則動點Q的軌跡方程是(x-1)2+(y+1)2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.若$\frac{cos(-α)•tan(π+α)}{cos(-π-α)•sin(2π-α)}$=3,求$\frac{2co{s}^{2}(\frac{π}{2}+α)+3sin(π+α)cos(π+α)}{cos(2π+α)+sin(-α)cos(-\frac{π}{2}-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=$\sqrt{3-2si{n}^{2}x}$的值域為[1,$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)(x∈R)關(guān)于$(-\frac{3}{4},0)$對稱,且$f(x)=-f(x+\frac{3}{2})$則下列結(jié)論:(1)f(x)的最小正周期是3,
(2)f(x)是偶函數(shù),(3)f(x) 關(guān)于$x=\frac{3}{2}$對稱,(4)f(x)關(guān)于$(\frac{9}{4},0)$對稱,正確的有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案