已知0<x<
π
2
,cosx=
4
5
,則tanx=______.
0<x<
π
2
,cosx=
4
5
,∴sinx=
3
5
,∴tanx=
3
4

故答案為:
3
4
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=mx3+nx+c(其中m,n,c為常數(shù))在x=2處取得極值c-16,則m+n=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<r<
2
+1
,則兩圓x2+y2=r2與(x-1)2+(y+1)2=2的位置關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<x<
π
2
,sinx-cosx=
π
6
,存在a,b,c(a,b,c∈N*),使得(b-πc)tan2x-atanx+(b-πc)=0,則a+b+c等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2+bx+c為偶函數(shù),曲線y=f(x)過點(2,5),g(x)=(x+a)f(x).
(Ⅰ)求實數(shù)b、c的值;
(Ⅱ)若曲線y=g(x)有斜率為0的切線,求實數(shù)a的取值范圍;
(Ⅲ)若當x=-1時函數(shù)y=g(x)取得極值,確定y=g(x)的單調區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知⊙O1:(x-1)2+y2=9,⊙O2x2+y2-10x+m2-2m+17=0(m∈R)
(Ⅰ)判斷⊙O1和⊙O2的位置關系;
(Ⅱ)當⊙O2半徑最大時,(1)求⊙O1和⊙O2公共弦所在直線l1的方程;
(2)設直線l1交x軸于點F,拋物線C以坐標原點為頂點,以F為焦點,直線l2經過(3,0)與拋物線C相交于A、B兩點,設∠AOB=α(O為坐標原點),求α最大時cosα的值.

查看答案和解析>>

同步練習冊答案