10.已知集合M={x|x2<4},N={x|x<1},則M∩N=(  )
A.{x|-2<x<1}B.{x|x<-2}C.{x|x<1}D.{x|x<2}

分析 利用一元二次不等式的解法化簡集合A,再借助數(shù)軸,求集合A,B的交集即可.

解答 解:M={x|x2<4}={x|-2<x<2},N={x|x<1},則M∩N={x|-2<x<1},
故選:A

點評 本題主要考查了集合交集的求法,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.設橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1的左右交點分別為F1,F(xiàn)2,點P在橢圓上,且滿足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=9,則|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|的值為( 。
A.8B.10C.12D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{0.5}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,則f[f(2)]=( 。
A.$\sqrt{3}$B.$\frac{1}{3}$C.9D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.若關于x的不等式|x+a|≤b的解集為[-6,2].
(1)求實數(shù)a,b的值;
(2)若實數(shù)m,n滿足|am+n|<$\frac{1}{3}$,|m-bn|<$\frac{1}{6}$,求證:|n|<$\frac{2}{27}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},
(1)若a=10,求A∩B;
(2)求能使A⊆B成立的a值的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設x>0,y>0,A、B、P三點共線且向量$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,則$\frac{1}{x}$+$\frac{4}{y}$的最小值( 。
A.4B.2C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.如果函數(shù)f(x)=ax2+2x+a2-3在區(qū)間[2,4]上具有單調(diào)性,則實數(shù)a取值范圍是$({-∞,-\frac{1}{2}}]∪[-\frac{1}{4},+∞]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)y=${(\frac{1}{3})^{2x-{x^2}}}$的值域為( 。
A.[3,+∞)B.(0,3]C.$[\frac{1}{3},+∞)$D.$(0,\frac{1}{3}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知$\frac{{cos({π-2α})}}{{sin({α-\frac{π}{4}})}}=-\frac{{\sqrt{2}}}{2}$,則-(cosα+sinα)等于( 。
A.$-\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{7}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

同步練習冊答案