如圖,AB是半圓O的直徑,過(guò)點(diǎn)O作弦AD的垂線(xiàn)交切線(xiàn)AC于點(diǎn)C,OC與半圓O交于點(diǎn)E,連接BE,DE.
(1)求證:∠BED=∠C;
(2)若OA=5,AD=8,求AC的長(zhǎng).
【答案】分析:(1)由切線(xiàn)的性質(zhì)得∠1+∠2=90°;由同角的余角相等得到∠C=∠2.由圓周角定理知∠BED=∠2,故∠BED=∠C;
(2)連接BD.由直徑直徑對(duì)的圓周角是直角得∠ADB=90°,由勾股定理求得
由△OAC∽△BDA得OA:BD=AC:DA,從而求得AC的值.
解答:解:(1)證明:∵AC是⊙O的切線(xiàn),AB是⊙O直徑,
∴AB⊥AC.
則∠1+∠2=90°,
又∵OC⊥AD,
∴∠1+∠C=90°,
∴∠C=∠2,
而∠BED=∠2,
∴∠BED=∠C;

(2)解:連接BD,
∵AB是⊙O直徑,
∴∠ADB=90°,
,
∴△OAC∽△BDA,
∴OA:BD=AC:DA,
即5:6=AC:8,
∴AC=
點(diǎn)評(píng):本題利用了切線(xiàn)的性質(zhì),直徑對(duì)的圓周角是直角,同角的余角相等,相似三角形的判定和性質(zhì)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,C是半圓O上異于A,B的點(diǎn),CD⊥AB,垂足為D,已知AD=2,CB=4
3
,則CD=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

21、選做題:
如圖,AB是半圓O的直徑,C是圓周上一點(diǎn)(異于A、B),過(guò)C作圓O的切線(xiàn)l,過(guò)A作直線(xiàn)l的垂線(xiàn)AD,垂足為D,AD交半圓于點(diǎn)E.求證:CB=CE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•深圳一模)如圖,AB是半圓O的直徑,C在半圓上,CD⊥AB于D,且AD=3DB,設(shè)∠COD=θ,則tan2
θ
2
=
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江蘇一模)選做題
(A)選修4-1:幾何證明選講
如圖,AB是半圓O的直徑,延長(zhǎng)AB到C,使BC=
3
,CD切半圓于點(diǎn)D,DE⊥AB,垂足為E,若AE:EB=3:1,求DE的長(zhǎng).
(B)選修4-2:矩陣與變換
在平面直角坐標(biāo)系xOy中,直線(xiàn)y=kx在矩陣
01
10
對(duì)應(yīng)的變換下得到的直線(xiàn)經(jīng)過(guò)點(diǎn)P(4,1),求實(shí)數(shù)k的值.
(C)選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知圓ρ=asinθ(a>0)與直線(xiàn)ρcos(θ+
π
4
)=1
相切,求實(shí)數(shù)a的值.
(D)選修4-5:不等式選講
已知a,b,c滿(mǎn)足abc=1,求證:(a+2)(b+2)(c+2)≥27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)(幾何證明選講)如圖,AB是半圓O的直徑,點(diǎn)C在半圓上,CD⊥AB,垂足為D,且AD=5DB,設(shè)∠COD=θ,則tanθ的值為
5
2
5
2

(2)(坐標(biāo)系與參數(shù)方程)圓O1和圓O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ,則經(jīng)過(guò)兩圓圓心的直線(xiàn)的直角坐標(biāo)方程為
x-y-2=0
x-y-2=0

(3)(不等式選講)若不等式|3x-b|<4的解集中的整數(shù)有且僅有0,1,2,則b的取值范圍是
(2,4)
(2,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案