設(shè)函數(shù)f(x)=ax-(1+a2)x2,其中a>0,區(qū)間I={x|f(x)>0}
(Ⅰ)求I的長(zhǎng)度(注:區(qū)間(a,β)的長(zhǎng)度定義為β-α);
(Ⅱ)給定常數(shù)k∈(0,1),當(dāng)1-k≤a≤1+k時(shí),求I長(zhǎng)度的最小值.
【答案】分析:(Ⅰ)解不等式f(x)>0可得區(qū)間I,由區(qū)間長(zhǎng)度定義可得I的長(zhǎng)度;
(Ⅱ)由(Ⅰ)構(gòu)造函數(shù)d(a)=,利用導(dǎo)數(shù)可判斷d(a)的單調(diào)性,由單調(diào)性可判斷d(a)的最小值必定在a=1-k或a=1+k處取得,通過(guò)作商比較可得答案.
解答:解:(Ⅰ)因?yàn)榉匠蘟x-(1+a2)x2=0(a>0)有兩個(gè)實(shí)根x1=0,>0,
故f(x)>0的解集為{x|x1<x<x2},
因此區(qū)間I=(0,),區(qū)間長(zhǎng)度為;
(Ⅱ)設(shè)d(a)=,則d′(a)=,
令d′(a)=0,得a=1,由于0<k<1,
故當(dāng)1-k≤a<1時(shí),d′(a)>0,d(a)單調(diào)遞增;當(dāng)1<a≤1+k時(shí),d′(a)<0,d(a)單調(diào)遞減,
因此當(dāng)1-k≤a≤1+k時(shí),d(a)的最小值必定在a=1-k或a=1+k處取得,
=<1,故d(1-k)<d(1+k),
因此當(dāng)a=1-k時(shí),d(a)在區(qū)間[1-k,1+k]上取得最小值,即I長(zhǎng)度的最小值為
點(diǎn)評(píng):本題考查二次不等式的求解,以及導(dǎo)數(shù)的計(jì)算和應(yīng)用等基礎(chǔ)知識(shí)和基本技能,考查分類討論思想和綜合運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+
xx-1
(x>1),若a是從1,2,3三個(gè)數(shù)中任取一個(gè)數(shù),b是從2,3,4,5四個(gè)數(shù)中任取一個(gè)數(shù),求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+b的圖象經(jīng)過(guò)點(diǎn)(1,7),又其反函數(shù)的圖象經(jīng)過(guò)點(diǎn)(4,0),求函數(shù)的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•楊浦區(qū)一模)(文)設(shè)函數(shù)f(x)=ax+1-2(a>1)的反函數(shù)為y=f-1(x),則f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)函數(shù)f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a為如圖所示的程序框圖中輸出的結(jié)果,則f(x)的展開式中常數(shù)項(xiàng)是( 。
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步練習(xí)冊(cè)答案