分析 (1)由已知可得${({\frac{sinA}{sinB}})^2}+\frac{sinA}{sinB}-6=0$,解得$\frac{sinA}{sinB}=2$,利用正弦定理即可得解.
(2)由余弦定理及a=2b得5b2-c2=3b2,解得$c=\sqrt{2}b$,利用余弦定理可求cosB,利用同角三角函數基本關系式可求sinB的值.
解答 解:(1)∵sin2A+sinAsinB-6sin2B=0,
故${({\frac{sinA}{sinB}})^2}+\frac{sinA}{sinB}-6=0$,
解得$\frac{sinA}{sinB}=2$或-3(舍去);
由正弦定理$\frac{BC}{AC}=\frac{sinA}{sinB}=2$.
(2)記角A、B、C的邊分別為a、b、c,由余弦定理得$cosC=\frac{{{a^2}+{c^2}-{b^2}}}{2ab}=\frac{3}{4}$,
將$\frac{BC}{AC}=2$,即a=2b代入,得5b2-c2=3b2,解得$c=\sqrt{2}b$,
由余弦定理得,$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{{{{({2b})}^2}+{{({\sqrt{2}b})}^2}-{b^2}}}{{2×2b×\sqrt{2}b}}=\frac{{5\sqrt{2}}}{8}$,
則$sinB=\sqrt{1-{{cos}^2}B}=\frac{{\sqrt{14}}}{8}$.
點評 本題主要考查了正弦定理,余弦定理,同角三角函數基本關系式在解三角形中的應用,考查了計算能力和轉化思想,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{113}}{2}$ | B. | 5 | C. | $\sqrt{41}$ | D. | 25 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $({2\sqrt{2}+2})π+96$ | B. | $({2\sqrt{2}+1})π+96$ | C. | $({\sqrt{2}+2})π+96$ | D. | $({\sqrt{2}+1})π+96$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com