(本題滿分15分)已知函數(shù).
(Ⅰ)若為定義域上的單調(diào)函數(shù),求實數(shù)m的取值范圍;
(Ⅱ)當時,求函數(shù)的最大值;
(Ⅲ)當,且時,證明:.
解: (Ⅰ),
∴---------2分
若f(x)在上是增函數(shù),則,即在恒成立,
而,故m≥0;-----------------------------------------2分
若f(x)在上是減函數(shù),則,即在恒成立,
而,故這樣的m不存在.------------------------------1分
經(jīng)檢驗,當m≥0時,對恒成立,
∴當m≥0時,f(x)在定義域上是單調(diào)增函數(shù).---------------------1分
(Ⅱ)當m =-1時,,則----------1分
當時,,此時f(x)為增函數(shù),
當時,,此時f(x)為減函數(shù)----------------------------2分
∴在x = 0時取得最大值,最大值為----------------------1分
(Ⅲ)當m = 1時,令,--1分
在[0,1]上總有,即在[0,1]上遞增------------------------------1分
∴當時,,即----1分
令,由(Ⅱ)知它在[0,1]上遞減,所以當時,,即-----------------1分
綜上所述,當m = 1,且時,---------------1分
【解析】略
科目:高中數(shù)學 來源:2013屆浙江省余姚中學高三上學期期中考試文科數(shù)學試卷(帶解析) 題型:解答題
(本題滿分15分)已知點(0,1),,直線、都是圓的切線(點不在軸上).
(Ⅰ)求過點且焦點在軸上的拋物線的標準方程;
(Ⅱ)過點(1,0)作直線與(Ⅰ)中的拋物線相交于兩點,問是否存在定點使為常數(shù)?若存在,求出點的坐標及常數(shù);若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆江蘇省揚州市高二下期中數(shù)學試卷(解析版) 題型:解答題
(本題滿分15分)
已知命題p:,命題q:. 若“p且q”為真命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年浙江省桐鄉(xiāng)市高三下學期2月模擬考試文科數(shù)學 題型:解答題
(本題滿分15分)已知圓N:和拋物線C:,圓的切線與拋物線C交于不同的兩點A,B,
(1)當直線的斜率為1時,求線段AB的長;
(2)設點M和點N關于直線對稱,問是否存在直線使得?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:杭州市2010年第二次高考科目教學質(zhì)量檢測 題型:解答題
(本題滿分15分)已知直線,曲線
(1)若且直線與曲線恰有三個公共點時,求實數(shù)的取值;
(2)若,直線與曲線M的交點依次為A,B,C,D四點,求|AB+|CD|的取值范圍。[來源:Z+xx+k.Com]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com