關(guān)于函數(shù)f(x)=2x3-6x2+7,下列說法不正確的是( )
A.在區(qū)間(-∞,0)內(nèi),f(x)為增函數(shù)
B.在區(qū)間(0,2)內(nèi),f(x)為減函數(shù)
C.在區(qū)間(2,+∞)內(nèi),f(x)為增函數(shù)
D.在區(qū)間(-∞,0)∪(2,+∞)內(nèi),f(x)為增函數(shù)
【答案】分析:先對函數(shù)f(x)求導(dǎo),根據(jù)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減,求出單調(diào)區(qū)間,對選項(xiàng)逐一驗(yàn)證即可得到答案.
解答:解:∵f(x)=2x3-6x2+7∴f'(x)=6x2-12x
令f'(x)>0,則x>2或x<0,此時(shí)函數(shù)f(x)單調(diào)遞增
f'(x)<0,則0<x<2,此時(shí)函數(shù)f(x)單調(diào)遞減
所以函數(shù)f(x)的增區(qū)間為:(-∞,0),(2,+∞)
減區(qū)間為:(0,2)
故選D.
點(diǎn)評:本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.