設等差數(shù)列{an}的前n項和為Sn,若S4≥10,S5≤15,則a6的最大值為   
【答案】分析:由已知中等差數(shù)列{an}的前n項和為Sn,若S4≥10,S5≤15,我們可以求出S6的最大值,進而得到答案.
解答:解:設等差數(shù)列{an}的首項為a,公差為d,
∵S4≥10,S5≤15,S4=4a+6d S5=5a+10d S6=6a+15d
設S6=S4×x+S5×y
則x=-,y=
即S6=-•S4+S5
即S6≤21
則a6的最大值為21-15=6
故答案為:6.
點評:本題考查的知識點是等差數(shù)列的性質(zhì),其中根據(jù)已知條件,利用又參數(shù)表達式范圍確定的方法,求出S6的最大值,是解答本題的關鍵,也是一個難點.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn.若S2k=72,且ak+1=18-ak,則正整數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•山東)設等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}的前n項和為TnTn+
an+12n
(λ為常數(shù)).令cn=b2n(n∈N)求數(shù)列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項之和為Sn滿足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,已知(a4-1)3+2012(a4-1)=1,(a2009-1)3+2012(a2009-1)=-1,則下列結論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,若S9=81,S6=36,則S3=(  )

查看答案和解析>>

同步練習冊答案