(1)若任意直線l過(guò)點(diǎn)F(0,1),且與函數(shù)f(x)=x2的圖象C交于兩個(gè)不同的點(diǎn)A、B,分別過(guò)點(diǎn)A、B作C的切線,兩切線交于點(diǎn)M,證明:點(diǎn)M的縱坐標(biāo)是一個(gè)定值,并求出這個(gè)定值;

(2)若不等式f(x)≥g(x)恒成立,g(x)=alnx(a>0)求實(shí)數(shù)a的取值范圍;

(3)求證:,(其中e為無(wú)理數(shù),約為2.71828).(注:上式右端是:)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青島一模)若任意直線l過(guò)點(diǎn)F(0,1),且與函數(shù)f(x)=
1
4
x2
的圖象C于兩個(gè)不同的點(diǎn)A,B過(guò)點(diǎn)A,BC,兩切線交于點(diǎn)M
(Ⅰ)證明:點(diǎn)M縱坐標(biāo)是一個(gè)定值,并求出這個(gè)定值;
(Ⅱ)若不等式f(x)≥g(x),g(x)=alnx(a>0),求實(shí)數(shù)a取值范圍;
(Ⅲ)求證:
2ln2
22
+
2ln3
32
+
2ln4
42
+…+
2ln
n2
n-1
e
,(其中e自然對(duì)數(shù)的底數(shù),n≥2,n∈N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若任意直線l過(guò)點(diǎn)F(0,1),且與函數(shù)f(x)=
1
4
x2
的圖象C交于兩個(gè)不同的點(diǎn)A,B,分別過(guò)點(diǎn)A,B作C的切線,兩切線交于點(diǎn)M,證明:點(diǎn)M的縱坐標(biāo)是一個(gè)定值,并求出這個(gè)定值;
(2)若不等式f(x)≥g(x)恒成立,g(x)=alnx(a>o)求實(shí)數(shù)a的取值范圍;
(3)求證:
ln24
24
+
ln34
34
+
ln44
44
+…
lnn4
n4
2
e
,(其中e為無(wú)理數(shù),約為2.71828).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若任意直線l過(guò)點(diǎn)F(0,1),且與函數(shù)數(shù)學(xué)公式的圖象C于兩個(gè)不同的點(diǎn)A,B過(guò)點(diǎn)A,BC,兩切線交于點(diǎn)M
(Ⅰ)證明:點(diǎn)M縱坐標(biāo)是一個(gè)定值,并求出這個(gè)定值;
(Ⅱ)若不等式f(x)≥g(x),g(x)=alnx(a>0),求實(shí)數(shù)a取值范圍;
(Ⅲ)求證:數(shù)學(xué)公式數(shù)學(xué)公式,(其中e自然對(duì)數(shù)的底數(shù),n≥2,n∈N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)若任意直線l過(guò)點(diǎn)F(0,1),且與函數(shù)f(x)=數(shù)學(xué)公式的圖象C交于兩個(gè)不同的點(diǎn)A,B,分別過(guò)點(diǎn)A,B作C的切線,兩切線交于點(diǎn)M,證明:點(diǎn)M的縱坐標(biāo)是一個(gè)定值,并求出這個(gè)定值;
(2)若不等式f(x)≥g(x)恒成立,g(x)=alnx(a>o)求實(shí)數(shù)a的取值范圍;
(3)求證:數(shù)學(xué)公式,(其中e為無(wú)理數(shù),約為2.71828).

查看答案和解析>>

同步練習(xí)冊(cè)答案