與雙曲線
x2
2
-y2=1有相同的漸近線,且過點(2,2)的雙曲線的標準方程是
 
考點:雙曲線的標準方程
專題:計算題,圓錐曲線的定義、性質與方程
分析:
x2
2
-y2=1有相同的漸近線的方程可設為
x2
2
-y2=λ≠0,再把點P的坐標代入即可.
解答: 解:依題設所求雙曲線方程為
x2
2
-y2=λ≠0
∵雙曲線過點(2,2),
∴2-4=λ,
∴λ=-2
∴所求雙曲線方程為
y2
2
-
x2
4
=1

故答案為:
y2
2
-
x2
4
=1
點評:本題考查雙曲線的簡單性質,考查待定系數(shù)法的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在直線l:3x-y-1=0上存在一點P,使得:P點到點A(4,1)和點B(3,4)的距離之和最。蟠藭r的距離之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,sin2A-sin2C=(sinA-sinB)sinB,則角C等于( 。
A、
π
6
B、
π
3
C、
6
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知b2=ac且c=2a,求cos B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“實數(shù)a=1”是“直線l1:(a+1)x-y+1=0和l2:(2a-1)x+2y-1=0垂直”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x
(x≥0),記y=f-1(x)為其反函數(shù),則f-1(2)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(-1,2),B(1,3),若直線l與直線AB平行,則直線l的斜率為( 。
A、-2
B、2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Acos2(ωx+φ})+1({A>0,ω>0,0<φ<
π
2
)的最大值為3,f(x)的圖象與y軸的交點坐標為(0,2),其相鄰兩條對稱軸間的距離為2,則f(1)+f(2)+…+f(2015)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用二分法求函數(shù)f(x)=3x-x-4的一個零點,其參考數(shù)據(jù)如下:
f(1.6000)=0.200f(1.5750)=0.067f(1.5625)=0.003
f(1.5563)=-0.029f(1.5500)=-0.060
據(jù)此數(shù)據(jù),可得方程3x-x-4=0的一個近似解(精確到0.01)是
 

查看答案和解析>>

同步練習冊答案