(本題滿分15分) 如圖,橢圓C: x 2+3 y 2=3b(b>0).

(Ⅰ) 求橢圓C的離心率;

(Ⅱ) 若b=1,A,B是橢圓C上兩點,且 | AB | =,求△AOB面積的最大值.

 

 

 

 

 

 

 

 

【答案】

(Ⅰ)解:由x2+3y2=3b,

所以e.                     

(Ⅱ)解:設A(x1,y1),B(x2,y2),△ABO的面積為S

如果ABx軸,由對稱性不妨記A的坐標為(,),此時S;

如果AB不垂直于x軸,設直線AB的方程為ykxm,

 得x2+3(kxm) 2=3,

即 (1+3k2)x2+6kmx+3m2-3=0,又Δ=36k2m2-4(1+3k2) (3m2-3)>0,

所以  x1x2=-,x1 x2,

(x1x2)2=(x1x2)2-4 x1 x2,   ①

由 | AB |=及 | AB |=

(x1x2)2,                           ②

結合①,②得m2=(1+3k2)-.又原點O到直線AB的距離為

所以S,

因此 S2[]=[-(-2)2+1]

=-(-2)2,

S.當且僅當=2,即k=±1時上式取等號.又,故S max

                                                  

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2010-2011年江蘇省如皋市五校高二下學期期中考試理科數(shù)學 題型:解答題

((本題滿分15分)
某有獎銷售將商品的售價提高120元后允許顧客有3次抽獎的機會,每次抽獎的方法是在已經(jīng)設置并打開了程序的電腦上按“Enter”鍵,電腦將隨機產(chǎn)生一個                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整數(shù)數(shù)作為號碼,若該號碼是3的倍數(shù)則顧客獲獎,每次中獎的獎金為100元,運用所學的知識說明這樣的活動對商家是否有利。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省招生適應性考試文科數(shù)學試卷(解析版) 題型:解答題

(本題滿分15分)設函數(shù)

(Ⅰ)若函數(shù)上單調(diào)遞增,在上單調(diào)遞減,求實數(shù)的最大值;

(Ⅱ)若對任意的,都成立,求實數(shù)的取值范圍.

注:為自然對數(shù)的底數(shù).

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省溫州市十校聯(lián)合體高三上學期期初摸底文科數(shù)學 題型:解答題

(本題滿分15分)已知直線與曲線相切

1)求b的值;

2)若方程上恰有兩個不等的實數(shù)根,求

①m的取值范圍;

②比較的大小

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省溫州市十校聯(lián)合體高三上學期期中考試文科數(shù)學 題型:解答題

(本題滿分15分)已知拋物線),焦點為,直線交拋物線、兩點,是線段的中點,

  過軸的垂線交拋物線于點,

  (1)若拋物線上有一點到焦點的距離為,求此時的值;

  (2)是否存在實數(shù),使是以為直角頂點的直角三角形?若存在,求出的值;若不存在,說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省六校高三第一次聯(lián)考文科數(shù)學 題型:解答題

(本題滿分15分)

已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)設,若上不單調(diào)且僅在處取得最大值,求的取值范圍.

 

查看答案和解析>>

同步練習冊答案