解方程:2logx25-3log25x=1.
考點:對數(shù)的運算性質(zhì),函數(shù)的零點
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)對數(shù)的運算性質(zhì)求解即可
解答: 解:令log25x=t,則原方程可化為:
1
t
-3t=1,
解得:t=-1或t=
2
3
,
故x=
1
25
或t=5 
4
3
點評:本題主要考查對數(shù)的運算性質(zhì),利用換元法求解更為簡單.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=cos
6
(x∈N+),則f(1)+f(2)+f(3)+…+f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-2cosx+1,y=f'(x)在區(qū)間[a,b]上是增函數(shù)且f'(a)=-1,f'(b)=1,則f(
a+b
2
)等于( 。
A、0
B、
2
2
C、1
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了研究探照燈的結(jié)構(gòu)特征,在坐標軸中畫出了探照燈的軸截面,如圖.已知探照燈的軸截面圖是拋物線y2=2px(p>0)的一部分,若該拋物線的焦點恰好在直線x+y-1=0上.
(1)求該拋物線的方程;
(2)若一束平行于x軸的直線入射到拋物線的P點,經(jīng)過拋物線焦點F后,由點Q反射出平行光線,試確定點P的位置使得從入射點P到反射點Q的路程最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-ln x.
(1)求函數(shù)的單調(diào)區(qū)間與最值;
(2)當(dāng)a=1時,函數(shù)g(x)=1-
f(x)
x2
,求證:
ln2
24
+
ln3
34
+…+
lnn
n4
1
2e
.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)值域:y=log2
3-sinx
3+sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=a2-2a+2,an+1=an+2(n-a)+1,n∈N+,當(dāng)且僅當(dāng)n=3時an最小,則實數(shù)a的取值范圍為 ( 。
A、(-1,3)
B、(
5
2
,3)
C、(2,4)
D、(
5
2
,
7
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在二位“漸降數(shù)”(定義:我們把每個數(shù)字都比其左邊數(shù)字小的正整數(shù)叫做“漸降數(shù)”(比如852,6543等)中任取一數(shù)都比54小的概率為( 。
A、
15
45
B、
13
44
C、
14
45
D、
13
45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC為等腰三角形,∠A=∠B=30°,BD為AC邊上的高,若
AB
=a,
AC
=b,則
BD
等于( 。
A、
3
2
a+b
B、
3
2
a-b
C、
3
2
b+a
D、
3
2
b-a

查看答案和解析>>

同步練習(xí)冊答案