設(shè)函數(shù),.
(Ⅰ)若,求的極小值;
(Ⅱ)在(Ⅰ)的結(jié)論下,是否存在實(shí)常數(shù)和,使得和?若存在,求出和的值.若不存在,說(shuō)明理由.
(Ⅲ)設(shè)有兩個(gè)零點(diǎn),且成等差數(shù)列,試探究值的符號(hào).
(Ⅰ);(Ⅱ)存在這樣的k和m,且;(Ⅲ)的符號(hào)為正.
【解析】
試題分析:(Ⅰ)首先由,得到關(guān)于的兩個(gè)方程,從而求出,這樣就可得到 的表達(dá)式,根據(jù)它的特點(diǎn)可想到用導(dǎo)數(shù)的方法求出的極小值; (Ⅱ)由(Ⅰ)中所求的和,易得到它們有一個(gè)公共的點(diǎn),且和在這個(gè)點(diǎn)處有相同的切線,這樣就可將問題轉(zhuǎn)化為證明和分別在這條切線的上方和下方,兩線的上下方可轉(zhuǎn)化為函數(shù)與0的大小,即證和成立,從而得到和的值; (Ⅲ)由已知易得,由零點(diǎn)的意義,可得到關(guān)于兩個(gè)方程,根據(jù)結(jié)構(gòu)特征將兩式相減,得到關(guān)于的關(guān)系式,又對(duì)求導(dǎo),進(jìn)而得到,結(jié)合上面關(guān)系可化簡(jiǎn)得:,針對(duì)特征將當(dāng)作一個(gè)整體,可轉(zhuǎn)化為關(guān)于 的函數(shù),對(duì)其求導(dǎo)分析得,恒成立.
試題解析:解:(Ⅰ)由,得,解得 2分
則=,
利用導(dǎo)數(shù)方法可得的極小值為 5分
(Ⅱ)因與有一個(gè)公共點(diǎn),而函數(shù)在點(diǎn)的切線方程為,
下面驗(yàn)證都成立即可 7分
由,得,知恒成立 8分
設(shè),即,易知其在上遞增,在上遞減,
所以的最大值為,所以恒成立.
故存在這樣的k和m,且 10分
(Ⅲ)的符號(hào)為正. 理由為:因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032304312717184672/SYS201403230432149218295155_DA.files/image015.png">有兩個(gè)零點(diǎn),則有
,兩式相減得 12分
即,于是
14分
①當(dāng)時(shí),令,則,且.
設(shè),則,則在上為增函數(shù).而,所以,即. 又因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032304312717184672/SYS201403230432149218295155_DA.files/image054.png">,所以.
②當(dāng)時(shí),同理可得:.
綜上所述:的符號(hào)為正 16分
考點(diǎn):1.函數(shù)的極值;2.曲線的切線;3.函數(shù)的零點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
mx |
x2+n |
a |
x |
7 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
4x |
4x+2 |
1 |
1001 |
2 |
1001 |
3 |
1001 |
1000 |
1001 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com