【題目】數列{xn}滿足x1=0,xn+1=﹣x2n+xn+c(n∈N*).
(Ⅰ)證明:{xn}是遞減數列的充分必要條件是c<0;
(Ⅱ)求c的取值范圍,使{xn}是遞增數列.
【答案】解:(Ⅰ)當c<0時,xn+1=﹣x2n+xn+c<xn ,
∴{xn}是單調遞減數列
充分條件
當{xn}是單調遞減數列時
x1=0>x2=﹣x21+x1+c
∴c<0
綜上{xn}是從遞減數列的充分必要條件是c<0;
(Ⅱ)由(I)得,c≥0
①當c=0時,xn=x1=0,此時數列為常數列,不符合題意;
②當c>0時,x2=c>x1=0,x3=﹣c2+2c>x2=c
∴0<c<1
0=x1≤xn< , =﹣(xn+1﹣xn)(xn+1+xn﹣1),
當0<c 時, xn﹣xn+1+1>0xn+2﹣xn+1﹣1<0,xn+2﹣xn+1與xn+1﹣xn同號,
由x2﹣x1=c>0xn+1﹣xn>0xn+1>xn .
= .
當c 時,存在N使xN xN+xN+1>1xN+2﹣xN+1與xN+1﹣xN異號,
與數列{xn}是從遞減數列矛盾.
所以當0<c 時,數列{xn}是遞增數列
【解析】(Ⅰ)通過證明必要條件與充分條件,推出{xn}是從遞減數列的充分必要條件是c<0;(Ⅱ)由(I)得,c≥0,通過①當c=0時,②當c>0時,推出0<c<1,當c 時,證明xn+1>xn . = .當c 時,說明數列{xn}是從遞減數列矛盾.得到0<c 時,數列{xn}是遞增數列.
【考點精析】本題主要考查了數列的通項公式的相關知識點,需要掌握如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】在鈍角△ABC中,∠A為鈍角,令 = , = ,若 =x +y (x,y∈R).現給出下面結論:
①當x= 時,點D是△ABC的重心;
②記△ABD,△ACD的面積分別為S△ABD , S△ACD , 當x= 時, ;
③若點D在△ABC內部(不含邊界),則 的取值范圍是 ;
④若 =λ ,其中點E在直線BC上,則當x=4,y=3時,λ=5.
其中正確的有(寫出所有正確結論的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=3x+λ3﹣x(λ∈R).
(1)若f(x)為奇函數,求λ的值和此時不等式f(x)>1的解集;
(2)若不等式f(x)≤6對x∈[0,2]恒成立,求實數λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司對新招聘的員工張某進行綜合能力測試,共設置了A,B,C三個測試項目.假定張某通過項目A的概率為 ,通過項目B,C的概率均為a(0<a<1),且這三個測試項目能否通過相互獨立.
(1)用隨機變量X表示張某在測試中通過的項目個數,求X的概率分布和數學期望E(X)(用a表示);
(2)若張某通過一個項目的概率最大,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,F為雙曲線C:﹣=1的左焦點,雙曲線C上的點Pi與P7﹣i(i=1,2,3)關于y軸對稱,則|P1F|+|P2F|+|P3F|﹣|P4F|﹣|P5F|﹣|P6F|的值是( 。
A. 9 B. 16 C. 18 D. 27
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PD⊥底面ABCD,AB∥CD,∠BAD= , AB=2,CD=3,M為PC上一點,PM=2MC.
(Ⅰ)證明:BM∥平面PAD;
(Ⅱ)若AD=2,PD=3,求二面角D﹣MB﹣C的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“嫦娥奔月,舉國歡慶”,據科學計算,運載“神六”的“長征二號”系列火箭,在點火第一秒鐘通過的路程為2 km,以后每秒鐘通過的路程都增加2 km,在達到離地面210 km的高度時,火箭與飛船分離,則這一過程大約需要的時間是______秒.
【答案】14
【解析】
設出每一秒鐘的路程為一數列,由題意可知此數列為等差數列,然后根據等差數列的前n項和的公式表示出離地面的高度,讓高度等于210列出關于n的方程,求出方程的解即可得到n的值.
設每一秒鐘通過的路程依次為a1,a2,a3,…,an,
則數列{an}是首項a1=2,公差d=2的等差數列,
由求和公式有na1+=210,即2n+n(n﹣1)=210,
解得n=14,
故答案為:14
【點睛】
在解決等差、等比數列的運算問題時,有兩個處理思路,一是利用基本量,將多元問題簡化為一元問題,雖有一定量的運算,但思路簡潔,目標明確;二是利用等差、等比數列的性質是兩種數列基本規(guī)律的深刻體現,應有意識地去應用.但在應用性質時要注意性質的前提條件,有時需要進行適當變形. 在解決等差、等比數列的運算問題時,經常采用“巧用性質、整體考慮、減少運算量”的方法.
【題型】填空題
【結束】
16
【題目】已知直線l:+=1,M是直線l上的一個動點,過點M作x軸和y軸的垂線,垂足分別為A,B,點P是線段AB的靠近點A的一個三等分點,點P的軌跡方程為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中正確的是_____________ .(填序號)
①棱柱的面中,至少有兩個面互相平行;
②以直角三角形的一邊為軸旋轉所得的旋轉體是圓錐;
③用一個平面去截圓錐,得到一個圓錐和一個圓臺;
④有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱;
⑤圓錐的頂點與底面圓周上任意一點的連線是圓錐的母線.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com