已知數(shù)列{a
n}中,a
n>0,a
1=1,a
n+2=
,a
100=a
96,則a
2014+a
3=
.
考點(diǎn):數(shù)列遞推式
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:利用a
1=1,a
n+2=
,a
100=a
96,分別求出a
2014、a
3,即可得到結(jié)論.
解答:
解:由a
1=1,a
n+2=
,
得a
3=
,
∵a
100=a
96,
∴a
100=a
96=
=
,
即a
962+a
96-1=0,
解得a
96=
或
,
∵a
n>0,
∴a
96=
,
∴a
94=
,…a
2014=
,
∴a
2014+a
3=
+
=
,
故答案為:
點(diǎn)評(píng):本題主要考查數(shù)列遞推公式的應(yīng)用,根據(jù)遞推公式分別求出a3,a96的值是解決本題的關(guān)鍵,綜合性較強(qiáng),難度較大
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知復(fù)數(shù)z=
(其中i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)
等于( )
A、-1-2i | B、-1+2i |
C、1+2i | D、1-2i |
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
設(shè)隨機(jī)變量a服從正態(tài)分布N(u,9),若p(ξ>3)=p(ξ<1),則u=( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知函數(shù)f(x)=2lnx+
(a>0),若當(dāng)x∈(0,+∞)時(shí),f(x)≥2恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知向量是單位向量
,
,若
•
=0,且|
-
|+|
-2
|=
,則|
+2
|的取值范圍是( 。
A、[1,3] |
B、[2,3] |
C、[,2] |
D、[,3] |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
設(shè)有一個(gè)容積V一定的鋁合金蓋的圓柱形鐵桶,已知單位面積鋁合金的價(jià)格是鐵的3倍,當(dāng)總造價(jià)最少時(shí),桶高為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知函數(shù)f(x)=
,則下列說(shuō)法正確的是( )
A、f(x)為偶函數(shù),且在R上為增函數(shù) |
B、f(x)為奇函數(shù),且在R上為增函數(shù) |
C、f(x)為偶函數(shù),且在R上為減函數(shù) |
D、f(x)為奇函數(shù),且在R上為減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知定義在R上的函數(shù)f(x)=asinωx+bcosωx(ω>0,a,b為實(shí)常數(shù),ab≠0),f(x)的最小正周期為π.
(1)求ω的值;
(2)試探究a與b所滿足的關(guān)系,使得f(-
-x)=f(x)對(duì)一切x∈R恒成立.
查看答案和解析>>