Loading [MathJax]/jax/output/CommonHTML/jax.js
6.若函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4)上是減函數(shù),則實數(shù)a的取值范圍是( �。�
A.0a15B.a15C.a≥-3D.a15或0

分析 若函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4)上是減函數(shù),則a=0,或{a01aa4,解得實數(shù)a的取值范圍.

解答 解:∵函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4)上是減函數(shù),
∴a=0,或{a01aa4
解得:0a15,
故選:A

點評 本題考查的知識點是函數(shù)的單調(diào)性,二次函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點A(2,3,5),B(3,1,4),則A,B兩點間的距離為(  )
A.2B.6C.32D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.i是虛數(shù)單位,則復(fù)數(shù)5i2i的虛部為( �。�
A.2iB.-2C.2D.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知圓C:x2+y2=4,直線l:y=x+b,若圓C上恰有4個點到直線l的距離都等于1,則b的取值范圍是2b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a=2{\;}^{-\frac{1}{3}}},b=log213,c=log3π,則( �。�
A.c>a>bB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列說法:
①若f(x)=ax2+(2a+b)x+2(其中x∈[-1,a])是偶函數(shù),則實數(shù)b=-2;
②f(x)=2016x2+x22016既是奇函數(shù)又是偶函數(shù);
③若f(x+2)=1fx,當(dāng)x∈(0,2)時,f(x)=2x,則f(2015)=2;
④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(xy)=xf(y)+yf(x),則f(x)是奇函數(shù).其中所有正確命題的序號是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)y=x+1+13x的定義域是( �。�
A.{x|x≥-1}B.{x|x>-1且x≠3}C.{x|x≠-1且x≠3}D.{x|x≥-1且x≠3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=2x-ax,且f(2)=92
(1)求實數(shù)a的值;
(2)判斷該函數(shù)的奇偶性;
(3)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某農(nóng)戶建造一座占地面積為36m2的背面靠墻的矩形簡易雞舍,由于地理位置的限制,雞舍側(cè)面的長度x不得超過7m,墻高為2m,雞舍正面的造價為40元/m2,雞舍側(cè)面的造價為20元/m2,地面及其他費用合計為1800元.
(1)把雞舍總造價y表示成x的函數(shù),并寫出該函數(shù)的定義域.
(2)當(dāng)側(cè)面的長度為多少時,總造價最低?最低總造價是多少?

查看答案和解析>>

同步練習(xí)冊答案
閸忥拷 闂傦拷