6.若函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4)上是減函數(shù),則實數(shù)a的取值范圍是( 。
A.$0≤a≤\frac{1}{5}$B.$a≤\frac{1}{5}$C.a≥-3D.$a≤\frac{1}{5}$或0

分析 若函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4)上是減函數(shù),則a=0,或$\left\{\begin{array}{l}a>0\\ \frac{1-a}{a}≥4\end{array}\right.$,解得實數(shù)a的取值范圍.

解答 解:∵函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4)上是減函數(shù),
∴a=0,或$\left\{\begin{array}{l}a>0\\ \frac{1-a}{a}≥4\end{array}\right.$,
解得:$0≤a≤\frac{1}{5}$,
故選:A

點評 本題考查的知識點是函數(shù)的單調(diào)性,二次函數(shù)的圖象和性質(zhì),難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知點A(2,3,5),B(3,1,4),則A,B兩點間的距離為( 。
A.$\sqrt{2}$B.$\sqrt{6}$C.$3\sqrt{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.i是虛數(shù)單位,則復數(shù)$\frac{5i}{2-i}$的虛部為(  )
A.2iB.-2C.2D.-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知圓C:x2+y2=4,直線l:y=x+b,若圓C上恰有4個點到直線l的距離都等于1,則b的取值范圍是$-\sqrt{2}<b<\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知a=2${\;}^{-\frac{1}{3}}}$,b=log2$\frac{1}{3}$,c=log3π,則(  )
A.c>a>bB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.下列說法:
①若f(x)=ax2+(2a+b)x+2(其中x∈[-1,a])是偶函數(shù),則實數(shù)b=-2;
②f(x)=$\sqrt{2016-{x^2}}$+$\sqrt{{x^2}-2016}$既是奇函數(shù)又是偶函數(shù);
③若f(x+2)=$\frac{1}{f(x)}$,當x∈(0,2)時,f(x)=2x,則f(2015)=2;
④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(xy)=xf(y)+yf(x),則f(x)是奇函數(shù).其中所有正確命題的序號是①②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.函數(shù)y=$\sqrt{x+1}$+$\frac{1}{3-x}$的定義域是( 。
A.{x|x≥-1}B.{x|x>-1且x≠3}C.{x|x≠-1且x≠3}D.{x|x≥-1且x≠3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=2x-$\frac{a}{x}$,且f(2)=$\frac{9}{2}$.
(1)求實數(shù)a的值;
(2)判斷該函數(shù)的奇偶性;
(3)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某農(nóng)戶建造一座占地面積為36m2的背面靠墻的矩形簡易雞舍,由于地理位置的限制,雞舍側(cè)面的長度x不得超過7m,墻高為2m,雞舍正面的造價為40元/m2,雞舍側(cè)面的造價為20元/m2,地面及其他費用合計為1800元.
(1)把雞舍總造價y表示成x的函數(shù),并寫出該函數(shù)的定義域.
(2)當側(cè)面的長度為多少時,總造價最低?最低總造價是多少?

查看答案和解析>>

同步練習冊答案