已知等差數(shù)列{an}的首項a1=2,a7=4a3,前n項和為Sn
(Ⅰ)求an及Sn;
(Ⅱ)設(shè)bn=
Sn-4an-4
n
,n∈N*,求bn的最大值.
考點:數(shù)列與不等式的綜合
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由已知條件利用等差數(shù)列的通項公式求出公差,由此能求出an=-3n+5,Sn=
-3n2+7n
2

(Ⅱ) 由(I)得bn=
Sn-4an-4
n
=
21
2
-
3
2
(n+
16
n
).由基本不等式能求出bn的最大值.
解答: 滿分(14分).
解:(Ⅰ) 設(shè)公差為d,由題意知
a1+6d=4(a1+2d),
由a1=2解得d=-3,
故an=-3n+5,Sn=
-3n2+7n
2
,n∈N*.…(8分)
(Ⅱ) 由(I)得
bn=
Sn-4an-4
n
=
31
2
-
3
2
(n+
16
n
).
由基本不等式得
n+
16
n
≥2
n•
16
n
=8,
所以bn=
31
2
-
3
2
(n+
16
n
)≤
7
2
,又當(dāng)n=4時,bn=
7
2

從而得bn的最大值為
7
2
.…(14分)
點評:本題主要考查等差數(shù)列的概念與通項公式、求和公式、不等式等基礎(chǔ)知識,同時考查運算求解能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2lnx-x2
(1)求函數(shù)f(x)在[
1
2
,2]的最大值;
(2)求證:
n
k=1
2n•ln(1+2-n)<n+
1
2
(n∈N*);
(3)函數(shù)h(x)=f(x)-mx的圖象與x軸交于A(x1,0),B(x2,0),且0<x1<x2,若正常數(shù)α,β滿足α+β=1,β≥α.求證:h′(αx1+βx2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,BA⊥AC,AB=AC=A1B=2,頂點A1在底面ABC上的射影恰為點B.
(1)求異面直線AA1與BC所成角的大;
(2)在棱B1C1上確定一點P,使AP=
14
,并求出二面角P-AB-A1的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
b
滿足:|
a
|=1,|
b
|=2,
(1)若(
a
-2
b
)•(7
a
+3
b
)=-6,求向量
a
b
的夾角θ;
(2)若向量
a
b
的夾角為
π
3
,求|
a
-2
b
|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+2sinxcosx+3cos2x,x∈R
(1)畫函數(shù)y=f(x)在區(qū)間[-
π
2
π
2
]上的圖象.
(2)函數(shù)f(x)的圖象可由函數(shù)y=
2
sin2x,x∈R的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2lnx-x2
(1)求函數(shù)f(x)在[
1
2
,2]的最大值;
(2)求證:
n
k=1
2n•ln(1+2-n)<n+
1
2
(n∈N*);
(3)若關(guān)于x的方程f(x)=-x2-2x-2+mex有唯一實數(shù)根,求實數(shù)m范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為
x=4cosθ
y=4sinθ
(θ為參數(shù)),直線l經(jīng)過點P(2,2),傾斜角α=
π
3

(1)寫出圓的標(biāo)準方程和直線l的參數(shù)方程;
(2)設(shè)直線l與圓C相交于A、B兩點,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z是復(fù)數(shù),z+2i與
z
2-i
均為實數(shù)(i為虛數(shù)單位),且復(fù)數(shù)(z+ai)2在復(fù)平面上對應(yīng)點在第一象限.
(Ⅰ)求z的值;
(Ⅱ)求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC中,C=30°,a+b=1,則△ABC面積S的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案