13.關(guān)于x的不等式ax2+bx+2>0的解集為{x|-1<x<2}則關(guān)于x的不等式bx2-ax-2>0的解集為(-2,1).

分析 利用一元二次不等式的解集可知方程ax2+bx+2=0的解是2和-1,
利用根與系數(shù)的關(guān)系求得a、b的值,再解所求的不等式解集即可.

解答 解:關(guān)于x的不等式ax2+bx+2>0的解集為{x|-1<x<2},
∴a<0且方程ax2+bx+2=0的解是2和-1,
∴$\frac{2}{a}$=2×(-1),且-$\frac{a}$=2+(-1),
解得a=-1,b=1;
∴不等式bx2-ax+2>0即為x2+x-2>0,
解得-2<x<1,
∴不等式bx2-ax-2>0的解集是(-2,1).
故答案為:(-2,1).

點(diǎn)評 本題主要考查了一元二次不等式的解法與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知全集U={0,2,4,6,8,10},集合A={2,4,6},B={1},則(∁UA)∪B等于( 。
A.{0,1,8,10}B.{1,2,4,6}C.{0,8,10}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)y=f(x)(x∈R)滿足f(x+1)=-f(x),且當(dāng)x∈[-1,0)時,$f(x)=\frac{{{x^2}+1}}{2}$,則函數(shù)y=f(x)的圖象與函數(shù)y=log3|x|的圖象的交點(diǎn)的個數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=x3+x的遞增區(qū)間是( 。
A.(-∞,1)B.(-1,1)C.(-∞,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,則f[f(-4)]=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.崇慶中學(xué)高三年級某班班班主任近期對班上每位同學(xué)的成績作相關(guān)分析時,得到周同學(xué)的某些成績數(shù)據(jù)如下:
第一次考試第二次考試第三次考試第四次考試
數(shù)學(xué)總分118119121122
總分年級排名133127121119
(1)求總分年級名次關(guān)于數(shù)學(xué)總分的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$(必要時用分?jǐn)?shù)表示)
(2)若周同學(xué)想在下次的測試時考入年級前100名,預(yù)測該同學(xué)下次測試的數(shù)學(xué)成績至少應(yīng)考多少分(取整數(shù),可四舍五入).
(參考公式$\left\{\begin{array}{l}{\stackrel{∧}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{a}=\overline{y}-\stackrel{∧}\overline{x}}\end{array}\right.$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓C:x2+y2=36,過點(diǎn)P(2,0)作圓C的任意弦.
(1)求這些弦的中點(diǎn)Q的軌跡方程.
(2)求y+x的最小值
(3)求$\frac{y}{x+12}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知雙曲線C1與橢圓C2:$\frac{y^2}{36}+\frac{x^2}{27}$=0有相同焦點(diǎn),且經(jīng)過點(diǎn)($\sqrt{15}$,4).
(1)求此雙曲線C1的標(biāo)準(zhǔn)方程;
(2)求與C1共漸近線且兩頂點(diǎn)間的距離為4的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=loga(1-x)+loga(3+x)(0<a<1)
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為-4,求a的值.

查看答案和解析>>

同步練習(xí)冊答案