已知橢圓的中心在坐標原點O,左頂點,離心率為右焦點,過焦點的直線交橢圓、兩點(不同于點).
(1)求橢圓的方程;
(2)當的面積時,求直線PQ的方程;
(3)求的范圍.

(1);(2);(3)(2,6)

解析試題分析:(1)設出橢圓的標準方程根據(jù)題意可a,利用離心率求得c,則b可求得,橢圓的方程可得.
(2)設出直線PQ的方程,與橢圓方程聯(lián)立,設出P,Q的坐標,進而根據(jù)韋達定理表示出,則利用弦長公式可表示出|PQ|,進而可表示出的面積方程可得.
(3)利用向量的坐標運算,建立函數(shù)關系式,利用橢圓的范圍找到定義域,利用二次函數(shù)即可求范圍.
試題解析:(1)設橢圓方程為 (a>b>0) ,由已知
                            2分
∴ 橢圓方程為.                         4分
(2)解法一: 橢圓右焦點. 設直線方程為∈R).  5分
   得.①              6分
顯然,方程①的.設,則有.                            8分
的面積==
解得:
∴直線PQ 方程為,即.       10分
解法二: 
.                        6分
點A到直線PQ的距離                   8分
的面積= 解得
∴直線PQ 方程為,即.       10分
解法三: 橢圓右焦點.當直線的斜率不存在時,,不合題意.   5分
當直線的斜率存在時,設直線方程為,           
 得.  ①        6分
顯然,方程①的
,則.         7分

=.                    8分
點A到直線PQ的距離                   9分
的面積

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線C:的離心率為,左頂點為(-1,0)。
(1)求雙曲線方程;
(2)已知直線x-y+m=0與雙曲線C交于不同的兩點A、B,且線段AB的中點在圓上,求m的值和線段AB的長。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知動點P與平面上兩定點連線的斜率的積為定值.
(1)試求動點P的軌跡方程C.
(2)設直線與曲線C交于M、N兩點,當|MN|=時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓,直線與圓相切,且交橢圓兩點,c是橢圓的半焦距, 
(1)求m的值;
(2)O為坐標原點,若,求橢圓的方程;
(3)在(2)的條件下,設橢圓的左右頂點分別為A,B,動點,直線與直線分別交于M,N兩點,求線段MN的長度的最小值 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直線l1:4x-3y+6=0和直線l2x=- (p>2).若拋物線Cy2=2px上的點到直線l1和直線l2的距離之和的最小值為2.
(1)求拋物線C的方程;
(2)若拋物線上任意一點M處的切線l與直線l2交于點N,試問在x軸上是否存在定點Q,使Q點在以MN為直徑的圓上,若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,橢圓=1(ab>0)的上,下兩個頂點為AB,直線ly=-2,點P是橢圓上異于點A,B的任意一點,連接AP并延長交直線l于點N,連接PB并延長交直線l于點M,設AP所在的直線的斜率為k1,BP所在的直線的斜率為k2.若橢圓的離心率為,且過點A(0,1).

(1)求k1·k2的值;
(2)求MN的最小值;
(3)隨著點P的變化,以MN為直徑的圓是否恒過定點?若過定點,求出該定點;如不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:的離心率為,左、右焦點分別為,點G在橢圓C上,且的面積為3.
(1)求橢圓C的方程:
(2)設橢圓的左、右頂點為A,B,過的直線與橢圓交于不同的兩點M,N(不同于點A,B),探索直線AM,BN的交點能否在一條垂直于軸的定直線上,若能,求出這條定直線的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,矩形ABCD中,|AB|=2,|BC|=2.E,F(xiàn),G,H分別是矩形四條邊的中點,分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標系,已知=λ=λ,其中0<λ<1.

(1)求證:直線ER與GR′的交點M在橢圓Γ:+y2=1上;
(2)若點N是直線l:y=x+2上且不在坐標軸上的任意一點,F(xiàn)1、F2分別為橢圓Γ的左、右焦點,直線NF1和NF2與橢圓Γ的交點分別為P、Q和S、T.是否存在點N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,拋物線Ey2=4x的焦點為F,準線lx軸的交點為A.點C在拋物線E上,以C為圓心,|CO|為半徑作圓,設圓C與準線l交于不同的兩點M,N.
 
(1)若點C的縱坐標為2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圓C的半徑.

查看答案和解析>>

同步練習冊答案