精英家教網 > 高中數學 > 題目詳情

在△ABC中,tanA+tanB+tanC=3數學公式,tan2B=tanA•tanC 則∠B=________.


分析:先根據兩角和與差的正切公式可得到tanA+tanB+tanC=tan(A+B)×(1-tanAtanB)+tanC,展開整理可得到
tanAtanBtanC=3,再由tan2B=tanA•tanC可得到tan3B=3,從而可求出tanB=,即可得到角B的值.
解答:∵tanA+tanB+tanC
=tan(A+B)×(1-tanAtanB)+tanC
=-tanC×(1-tanAtanB)+tanC
=-tanC+tanAtanBtanC+tanC
=tanAtanBtanC=3
tan2B=tanAtanC=
∴tan3B=3
tanB=
∴B=60°
故答案為:
點評:本題主要考查兩角和與差的正切公式的應用.考查考生的靈活能力.
練習冊系列答案
相關習題

科目:高中數學 來源:數學教研室 題型:022

在△ABC中,tan B=1,tan C=2,b=100,則a=_______.

查看答案和解析>>

科目:高中數學 來源:數學教研室 題型:022

在△ABC中,tan B=1,tan C=2,b=100,則a=__________.

查看答案和解析>>

科目:高中數學 來源:浙江省湖州中學2010屆高三下學期第一次月考數學理科試題 題型:013

在△ABC中,tan=0,則過點C,以A、H為兩焦點的橢圓的離心率為

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中數學 來源:浙江省湖州中學2010屆高三下學期第一次月考數學文科試題 題型:013

在△ABC中,tan=0,=0,則過點C,以A、H為兩焦點的橢圓的離心率為

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中數學 來源:0103 期中題 題型:解答題

在△ABC中,tan=2sinC。
(1) 求∠C的大;
(2) 求y=sinA+sinB+sinC的取值范圍。

查看答案和解析>>

同步練習冊答案