【題目】已知某中學(xué)聯(lián)盟舉行了一次“盟校質(zhì)量調(diào)研考試”活動(dòng),為了解本次考試學(xué)生的某學(xué)科成績(jī)情況,從中抽取部分學(xué)生的分?jǐn)?shù)(滿(mǎn)分為分,得分取正整數(shù),抽取學(xué)生的分?jǐn)?shù)均在之內(nèi))作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì),按照的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(莖葉圖中僅列出了得分在的數(shù)據(jù))

(Ⅰ)求樣本容量和頻率分布直方圖中的的值;

(Ⅱ)在選取的樣本中,從成績(jī)?cè)?/span>分以上(含分)的學(xué)生中隨機(jī)抽取名學(xué)生參加“省級(jí)學(xué)科基礎(chǔ)知識(shí)競(jìng)賽”,求所抽取的名學(xué)生中恰有一人得分在內(nèi)的概率.

【答案】(1;(2.

【解析】試題分析:()由樣本容量和頻數(shù)頻率的關(guān)系易得答案;()由題意可知,分?jǐn)?shù)在[80,90)內(nèi)的學(xué)生有5人,記這5人分別為,分?jǐn)?shù)在[90,100]內(nèi)的學(xué)生有2人,記這2人分別為,列舉法易得

試題解析:()由題意可知,樣本容量, ……2

, ……4

……6

)由題意可知,分?jǐn)?shù)在內(nèi)的學(xué)生有5人,記這5人分別為,分?jǐn)?shù)在內(nèi)的學(xué)生有2人,記這2人分別為,抽取2名學(xué)生的所有情況有21種,分別為:

其中2名同學(xué)的分?jǐn)?shù)恰有一人在內(nèi)的情況有10種,

所抽取的2名學(xué)生中恰有一人得分在內(nèi)的概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本市某玩具生產(chǎn)公司根據(jù)市場(chǎng)調(diào)查分析,決定調(diào)整產(chǎn)品生產(chǎn)方案,準(zhǔn)備每天生產(chǎn), , 三種玩具共100個(gè),且種玩具至少生產(chǎn)20個(gè),每天生產(chǎn)時(shí)間不超過(guò)10小時(shí),已知生產(chǎn)這些玩具每個(gè)所需工時(shí)(分鐘)和所獲利潤(rùn)如表:

玩具名稱(chēng)

工時(shí)(分鐘)

5

7

4

利潤(rùn)(元)

5

6

3

(Ⅰ)用每天生產(chǎn)種玩具個(gè)數(shù)種玩具表示每天的利潤(rùn)(元);

(Ⅱ)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形為菱形,四邊形為平行四邊形,設(shè)相交于點(diǎn),

1)證明:平面平面;

2)若與平面所成角為60°,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y滿(mǎn)足f(x)+f(y)=f(x+y)+3,f(3)=6,當(dāng)x>0 時(shí),f(x)>3,那么,當(dāng)f(2a+1)<5時(shí),實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c的圖像如圖,直線(xiàn)y=0在原點(diǎn)處與函數(shù)圖像相切,且此切線(xiàn)與函數(shù)圖像所圍成的區(qū)域(陰影)面積為
(1)求f(x)的解析式
(2)若常數(shù)m>0,求函數(shù)f(x)在區(qū)間[﹣m,m]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)題意解答
(1)求定積分 |x2﹣2|dx的值;
(2)若復(fù)數(shù)z1=a+2i(a∈R),z2=3﹣4i,且 為純虛數(shù),求|z1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知f(x)=x2﹣2x+2,在[ ,m2﹣m+2]上任取三個(gè)數(shù)a,b,c,均存在以 f(a),f(b),f(c)為三邊的三角形,則m的取值范圍為(
A.(0,1)
B.[0,
C.(0, ]
D.[ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知是半徑為2的半球的直徑, 為球面上的兩點(diǎn)且,

(1)求證:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a為實(shí)數(shù),若函數(shù)f(x)=|x2+ax+2|﹣x2在區(qū)間(﹣∞,﹣1)和(2,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

同步練習(xí)冊(cè)答案