(注意:在試題卷上作答無效)

若數(shù)列滿足,其中為常數(shù),則稱數(shù)列為等方差數(shù)列.已知等方差數(shù)列滿足.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和;

(3)記,則當(dāng)實數(shù)時,不等式能否對于一切的恒成立?請說明理由.

 

 

 

 

 

 

 

 

 

【答案】

 解:(1)由

   ……4分

(2)

設(shè)    ①

+   ②

則①-②得:

    ……8分

(3)法一:,不等式恒成立,即

對一切恒成立。設(shè),當(dāng)時,由于對稱軸

,而函數(shù)是增函數(shù),所以不等式不等式

恒成立,即當(dāng)實數(shù)時,不等式對于一切的

恒成立。

法二:,不等式恒成立,即

對一切恒成立,所以    ,而

故當(dāng)實數(shù)時,不等式對于一切的

恒成立!12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省高三9月月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)(注意:在試題卷上作答無效)

已知曲線,從上的點軸的垂線,交于點,再從點軸的垂線,交于點,設(shè)

(1)求數(shù)列的通項公式;

(2)記,數(shù)列的前項和為,試比較的大小;

(3)記,數(shù)列的前項和為,試證明:

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省高考壓軸理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)(注意:在試題卷上作答無效)

已知曲線,從上的點軸的垂線,交于點,再從點軸的垂線,交于點,設(shè)

(1)求數(shù)列的通項公式;

(2)記,數(shù)列的前項和為,試比較的大小;

(3)記,數(shù)列的前項和為,試證明:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省高考壓軸理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)(注意:在試題卷上作答無效)

已知橢圓的左、右焦點分別為,若以為圓心,為半徑作圓,過橢圓上一點作此圓的切線,切點為,且的最小值不小于為

(1)求橢圓的離心率的取值范圍;

(2)設(shè)橢圓的短半軸長為,圓軸的右交點為,過點作斜率為的直線與橢圓相交于兩點,若,求直線被圓截得的弦長的最大值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣西省南寧市高三第二次適應(yīng)性考試數(shù)學(xué)理卷 題型:解答題

       (本小題共12分)(注意:在試題卷上作答無效)

已知拋物線上一動點P,拋物線內(nèi)一點A(3,2) ,F為焦點且的最小值為.

(1)求拋物線的方程以及使得取最小值時的P點坐標(biāo);

(2)過(1)中的P點作兩條互相垂直的直線與拋物線分別交于C、D兩點,直線CD是否過一定點?若是,求出該定點的坐標(biāo),若不是,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)(注意:在試題卷上作答無效

過拋物線的對稱軸上一點的直線與拋物線相交于M、N兩點,自M、N向直線作垂線,垂足分別為、。

(Ⅰ)當(dāng)時,求證:;

(Ⅱ)記、 、的面積分別為、,是否存在,使得對任意的,都有成立。若存在,求出的值;若不存在,說明理由。

查看答案和解析>>

同步練習(xí)冊答案